Большой космический клуб.
Об авторах.
Авторы выражают благодарность Александру Геннадьевичу ШЛЯДИНСКОМУ за превосходно выполненные схемы ракет-носителей, Тимофею Васильевичу ПРЫГИЧЕВУ и Леону РОЗЕНБЛЮМУ за подбор источников и ценные замечания по отдельным главам книги, Татьяне Айзиковне РЫБАСОВОЙ и Игорю Анатольевичу ЛИСОВУ за помощь в редактировании и верстке материала, а также главному редактору журнала «Новости космонавтики» Игорю Адольфовичу МАРИНИНУ за всемерную поддержку и особенно — руководителю ЗАО «РТСофт» Ольге Викторовне СИНЕНКО за материализацию проекта в книгу.АФАНАСЬЕВ Игорь Борисович (1962 г.р.) — выпускник МВТУ им. Н.Э.Баумана, профессиональный журналист, редактор Издательского дома и журнала «Новости космонавтики». Автор более 400 тематических публикаций, в т. ч. книг «Неизвестные корабли» (1991 г.) и «Р-12. Сандаловое дерево» (1997 г.).
ЛАВРЕНОВ Александр Николаевич (1956 г.р.) — выпускник МАИ, профессиональный разработчик аэрокосмической техники, ведущий сотрудник НПО машиностроения. Автор более 30 патентов и авторских свидетельств на изобретения, в т. ч. концепции космической рекламы (1991 г.).
И.Афанасьев и А.Лавренов сотрудничают с 1993 г., совместно участвовали в разработке ряда перспективных проектов (гиперзвуковая летающая лаборатория «ИГЛА», космические аппараты и атмосферные дистанционно пилотируемые летательные аппараты малой размерности, др.) и подготовке отдельных публикаций в прессе.
Книга «Большой космический клуб» — это взгляд в НАЧАЛО становления национальных космических технологий во всем хитросплетении инженерных, политических, финансовых, социокультурных, военных и прочих подходов.
Предисловие.
Символ эпохи — серебристый сверкающий шар с гордо откинутыми, словно в стремительном порыве, мачтами-стрелами антенн. Самый ПЕРВЫЙ искусственный спутник Земли…
И столь же узнаваемый «брэнд» — ракета, которая вывела его на орбиту, с элегантным «клёшем» боковых ускорителей и геометрическим узором своих колоколообразных дюз…
РАКЕТА И СПУТНИК. В обыденной жизни, далекой от космонавтики, мы их почти не различаем. Лишь постепенно, вместе с интересом к космосу, приходит понимание, насколько они разные. Ракета — огромная, мощная, дорогая — буквально «сгорает» за несколько минут полета; пожертвовав собой, добравшись на пределе сил до порога космоса, она бросает в звездную пустоту субтильное, по сравнению с ней, тельце спутника — но хитроумное, приспособленное годами существовать в вакууме, невесомости, полях жестких излучений, в огне и мраке Вселенной…
В известном романе Э. Арсан «Эммануэль», насквозь романтическо-эротическом и «земном», вдруг обнаруживаются такие строки: «…лучшая поэма, которую когда-нибудь писал человек… Вот эта поэма:
«3 ЯНВАРЯ, В 3.57 СПУТНИК В ВИДЕ МАЛЕНЬКОЙ БЕЛОЙ ЗВЕЗДЫ ПОЯВИТСЯ В ЦЕНТРЕ ТРЕУГОЛЬНИКА, ОБРАЗОВАННОГО АЛЬФОЙ ВОЛОПАСА, АЛЬФОЙ ВЕСОВ И АЛЬФОЙ ДЕВЫ».
И звезда появилась, маленькая щепотка металла, брошенная человеком в пучину мироздания. И новый век, начавшийся с этой минуты, — он наш. Отныне пусть погибнет наша Земля и наша раса исчезнет — вечно будет кружить в глубинах космоса звезда, сделанная нашими руками, произносящая слова на нашем языке, переворачивающая, разрушающая своим «бип-бип» все холодное молчание Вселенной».
…Tempus fugit — «время летит» (лат.). Практическая космонавтика приближается к своему пятидесятилетию. «Космический клуб» государств, которые инициируют собственные разработки аэрокосмической техники, пополняется все новыми членами. Когда, как и почему это произошло в каждом конкретном случае — предмет данной публикации.
Введение.
4 октября 1957 г. человечество открыло самую грандиозную — космическую — эру своей истории. Первый искусственный спутник Земли (ИСЗ), запущенный в этот день с космодрома Байконур, разрушив в мгновение ока устоявшиеся политические, технические, военные и многие другие стереотипы, качественно изменил масштаб нашей цивилизации.
«Спутники все смешали и спутали, все вдруг устарело и стало меньше» (А.Твардовский).
В одночасье обратились явью и конкретными целями «фантастические» пророчества основоположника практической космонавтики К.Э.Циолковского; «Человечество не останется вечно на Земле, но, в погоне за светом и пространством, сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство…».
Великий основоположник мировой практической космонавтики Константин Эдуардович Циолковский.
Идея ИСЗ впервые была сформулирована великим И.Ньютоном в его работе «Математические начала натуральной философии» (1687 г.), в пору исследования им проявлений и свойств гравитации. Вот его рассуждения:
«Если свинцовое ядро, брошенное горизонтально силою пороха из пушки, поставленной на вершине горы, отлетает по кривой — прежде чем упасть на землю — на 2 мили, то предполагая, что сопротивления воздуха нет, если бросить его с двойной скоростью, оно отлетит приблизительно вдвое дальше; если с десятикратной — то в 10 раз. Увеличивая скорость, можно, по желанию, увеличить и дальность полета, и уменьшить кривизну линии, по которой ядро движется — так можно заставить его упасть с кривизной траектории 10°, 30°… 90°… Можно заставить ядро облететь всю Землю и даже уйти в небесные пространства и продолжать удаляться до бесконечности».
Скорость ядра, способного «облететь всю Землю» — впоследствии ее назвали первой космической[1] — должна составлять 7,9 км/сек.
Таким образом, идея ИСЗ концептуально была высказана и теоретически обоснована. Пришла пора следующей фазы — ее инженерной реализации, в первую очередь, в плане практического достижения космических скоростей.
Из предложений, каким образом это сделать, упомянем следующие:
— сверхпушка (помните фантастическую «колумбиаду» Жюля Верна?);
— электромагнитный ускоритель;
— гигантская праща;
— использование вулканических извержений;
— создание материалов, экранирующих гравитационное поле («кэворит» Герберта Уэллса);
— освоение способов дистанционной передачи энергии на борт летательного аппарата…
Испытание временем и технико-экономической целесообразностью выдержали только ракеты (во всяком случае, пока). Прогресс в их создании и совершенствовании, стимулированный Второй мировой и «холодной» войнами, позволил сделать решающий шаг к осуществлению орбитального внеатмосферного полета[2].
Две мировые сверхдержавы — Советский Союз и Соединенные Штаты — в контексте глобального военно-технического соперничества практически одновременно приступили к разработке и созданию баллистических ракет (БР) дальнего действия — сначала т. н. среднего радиуса (БРСД), а затем межконтинентальных (МБР).
Великие организаторы и инженеры стали в авангарде этого принципиально нового дела: Сергей Павлович Королев в СССР и Вернер фон Браун в США. Во многом благодаря их таланту, энергии, пристрастиям, а также победам и неудачам история ракет-носителей (РН), «выросших» из БРСД и МБР, всей космонавтики в ее начальной фазе стала такой, какой мы ее знаем.
ЗАПУСК ПЕРВЫХ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ — ЭТО ТРИУМФ РАКЕТЫ.
С 1957 г. и до наших дней инженерный гений человечества не смог изобрести ничего более эффективного, чем ракетный принцип достижения космических скоростей сложными автоматическими и пилотируемыми аппаратами. Более того: самая первая в мире ракета-носитель — легендарная Р-7 С.П.Королева — совершенствуясь, продолжает интенсивно летать и поныне.
Что касается эволюции ИСЗ — и как реального технического объекта для проникновения в космос, и как системы глобального мониторинга планеты, и как базы для последующей экспансии землян во внеземелье — то здесь бесспорный приоритет идеи принадлежит К.Э.Циолковскому, нашему великому мыслителю и провидцу. Его научные «грезы о Земле и Небе» дают поразительный пример гениального предвосхищения как столбовых путей эволюции человеческой цивилизации вообще (в те времена, когда НИКТО об этом даже не думал!), так и основополагающих инженерных решений в ракетно-космической технике (которая в ту пору тем более была для всех без исключения «терра инкогнита»).
Возвращаясь на «грешную Землю», отметим: космические РН и боевые МБР (БРСД) — если и не технические «близнецы», то весьма «близкие родственники»; следовательно, «прорыв в космос» какого-либо государства — это реальная демонстрация его потенциальной военной мощи и возможностей. Даже для тех держав, космический носитель которых не был разработан на базе боевой ракеты. С точки зрения политической практики, это — «козырной туз». В этой связи не должен удивлять тот факт, что, применительно к первым национальным ИСЗ, в большинстве случаев они имели «упрощенную» конструкцию и играли роль КОСМИЧЕСКОГО СИМВОЛА.
…Да, задача проникновения в космос и освоения информационных, материальных и энергетических богатств Вселенной имеет общецивилизационное значение, привлекает своей чистотой и гуманизмом, грандиозна по масштабам и перспективам. Однако не следует забывать: выделение ресурсов на «затратную» космонавтику реально лимитируется «сиюминутным» политико-экономическим раскладом, степенью военной угрозы, личными и державными амбициями и т. п.
Сложный и часто непредсказуемый — словно броуновское движение — конгломерат человеческих устремлений, действий, свершений сплетает неповторимый узор бытия. И это — ШАГИ ИСТОРИИ.
«Большой космический клуб» — неформальное объединение государств, располагающих национальной реально продемонстрированной технологией космических полетов, включающей, как минимум, запуск собственного спутника собственной ракетой-носителем с собственного космодрома. Ниже представлена официальная хронология запусков первых национальных космических аппаратов. Следует отметить, что, с точки зрения членства в клубе, приоритеты расставлены следующим образом:
— национальная ракета-носитель;
— национальный спутник (в т. ч. выведенный на орбиту иностранным носителем);
— национальный космодром.
Принято, что именно такой порядок приоритетов реально формирует независимый доступ в космос того или иного государства (объединения государств).
Полужирным курсивом выделены страны (объединения стран) — члены «Большого космического клуба», курсивом выделены страны (объединения стран) — участники космической деятельности, кандидаты в члены «Большого космического клуба».
«Россия, спутник!».
В нашей стране все великие начинания осуществляются «сверху»… И масштабная разработка ракет — после удачного дебюта их первых боевых образцов на арене II мировой войны — не стала исключением.
Постановление Совета Министров СССР № 1017-419сс от 13 мая 1946 г. Считая важнейшей задачей создание реактивного вооружения и организацию научно-исследовательских и экспериментальных работ в этой области, Совет Министров Союза ССР ПОСТАНОВЛЯЕТ: 1. Создать Специальный Комитет по Реактивной Технике… 5. Обязать Специальный Комитет по Реактивной Технике представить на утверждение председателю Совета Министров СССР план научно-исследовательских и опытных работ на 1946–1948 гг., определить как первоочередную задачу — воспроизведение с применением отечественных материалов ракет типа ФАУ-2 (дальнобойной управляемой ракеты) и Вассерфаль (зенитной управляемой ракеты)… 13. Обязать Комитет по Реактивной Технике отобрать из соответствующих министерств и послать в Германию для изучения и работы по реактивному вооружению необходимое количество специалистов различного профиля, имея ввиду, что, с целью получения опыта, к каждому немецкому специалисту должны быть прикреплены советские специалисты… 22. Поручить Специальному Комитету представить Совету Министров СССР предложения о командировании в США Комиссии для размещения заказов и закупки оборудования и приборов для лабораторий Научно-исследовательских институтов по реактивной технике, предусмотрев в этих предложениях предоставление Комиссии права закупки по открытой лицензии на сумму 2 миллиона долларов… 25. Поручить Министерству вооруженных сил СССР (т. Булганину) внести в Совет Министров предложения о месте и строительстве Государственного Центрального полигона для реактивного вооружения… 32. Считать работы по развитию реактивной техники важнейшей государственной задачей и обязать все министерства и организации выполнять задания по реактивной технике как первоочередные.…Под большим впечатлением от немецкой ракетной техники в Советском Союзе начинаются работы по созданию аналогичных систем. Ключевые специалисты (в т. ч. бывшие «зэ-ка» Королёв и Глушко) направляются в Германию. Перенимается опыт, вывозятся ценные кадры, оборудование, уцелевшая материальная часть изделий.
На горизонте маячит новая война с применением дальнобойных носителей атомных боезарядов, а гордость нашей реактивной артиллерии «катюша» бьет лишь на несколько километров… Нужен качественный технический и технологический скачок, и жесткая установка лидера СССР И.В.Сталина на копирование передовых зарубежных образцов военной продукции — будь то «Фау» («1» и «2»), стратегический бомбардировщик В-29, поточно-секционное производство подводных лодок и т. п. — как минимум создавала предпосылки для уравнивания боевых потенциалов СССР и стран Запада.
Первая отечественная управляемая баллистическая ракета дальнего действия Р-1 была точной копией немецкой А-4 («Фау-2») (Фото из архива РКК «Энергия»).
30 ноября 1945 г. приказом министра вооружений Д. Ф. Устинова на базе артиллерийского завода № 88 организуется СКБ, отдел № 3 которого (начальник С. П. Королёв) начинает работы по «большой» баллистической ракете на основе А-4/«Фау-2» (V-2).
К концу 1947 г. в отделе № 3 уже 310 специалистов, спецпоезд и вновь организованное экспериментальное производство. Основные руководители (они же идеологи больших баллистических ракет): С. П. Королёв, его заместитель В. П. Мишин, начальник проектного бюро К. Д. Бушуев, конструкторского бюро — В. С. Будник, экспериментального цеха — Г. Я. Семенов.
Параллельно группа немецких специалистов во главе с д-ром Х.Грёттрупом (H.Gruttrup) на острове Городомля (озеро Селигер) проектирует на базе «Фау-2» более совершенную ракету Г-1[3].
Первый пуск А-4 в СССР состоялся 18 октября 1947 г. А уже через год, 17 сентября 1948 г., стартовал ее отечественный «клон» — Р-1 (принят на вооружение Советской Армии в 1950 г.).
Одновременно в интересах и при участии Академии наук СССР развертывается программа геофизических пусков[4]. 22 июля 1951 г. на ракете Р-1 В впервые запущены подопытные животные — собачки Дезик и Цыган. Отрабатываются гермокабины, высотные скафандры, катапульты, парашютные системы спасения. Проводится активный зондаж верхней атмосферы, ионосферы, эксперименты по распространению радиоволн вплоть до сверхдлинноволнового диапазона.
В средствах массовой информации (СМИ) публикуются работы «открытых» советских (А.А.Штернфельд, Г.И.Покровский[5], Ю.С.Хлебцевич, Ф.Ю.Зигель и др.) и зарубежных (В. фон Браун, В.Лей, Э.Бургесс, Э.Зенгер, К.Гэтланд, др.) специалистов, посвященные гипотетическим космическим проектам, поощряется тематика «космической» научной фантастики.
Это важно, поскольку «открытие совершается ныне дважды: один раз — когда оно публикуется, и второй раз — когда это уже (и, может быть, давно) опубликованное сообщение открывает для себя популяция специалистов» (С.Лем).
Катапультная тележка с «собачьей» гермокабиной, которая применялась при высотных пусках ракет (Фото И.Афанасьева).
Грандиозность задачи прорыва в космос казалась безмерной. Создать ракетно-космическую технику «на коленке», как это удалось, например, в авиации братьям Райт, НЕВОЗМОЖНО. И это понятно: реализация проекта государственного (если не сказать — планетарного) масштаба в конкретный материальный продукт (ракеты, полигон, пункты управления и т. п.) сопряжена с трудностью привлечения огромных сил и средств. Их можно получить лишь в рамках создания стратегических вооружений под патронажем государства как важное условие обеспечения его суверенитета. И здесь оборонная политика СССР, построенная по принципу «маслом каши не испортишь», позволяла привлечь необходимые ресурсы. Как выяснится впоследствии, именно «связка» дерзкой интеллектуальной элиты, асимметричной военной доктрины и жесткого планового хозяйствования на волне мажорного послевоенного настроя общества обеспечила появление и стремительный прогресс отечественного «ракетно-ядерного щита». И заодно — в качестве почти бесплатного (!) приложения — отечественной космонавтики.
Боевые баллистические ракеты дальнего действия эволюционировали энергично и в целом успешно. Проекты Р-2 (досягаемость до 600 км) и Р-5 (1200 км, на базе остановленной разработки Р-3) подвели технических специалистов и военно-политическое руководство, ответственное за данное направление, к решению кардинально увеличить дальность действия изделий — вплоть до межконтинентальной.
«Геофизическая» модификация Р-2 для исследования верхних слоев атмосферы (Коллаж А.Шлядинского).
Что касается чисто космического вектора развития нашей ракетной техники, а также первых концептуальных прикидок облика реальных ИСЗ — лидерство здесь, бесспорно, принадлежит Михаилу Клавдиевичу Тихонравову.
Как вспоминал впоследствии А.В.Брыков, сотрудник группы Тихонравова в НИИ-4, «…действительно, многие специалисты ракетной техники обратили внимание на замечательную, но нереализуемую в ближайшей перспективе идею К.Э.Циолковского о… достижении [ «ракетными поездами»] больших скоростей. Среди них только один Тихонравов «увидел» возможность на современном уровне ракетостроения (у нас еще и отработанных одиночных жидкостных баллистических ракет не было!) создать многоступенчатую… ракету «пакетной схемы», он самостоятельно сделал необходимые оценки, подтверждающие реальность получения первой космической скорости. И несмотря на «неприятие» военными специалистами… предложенного проекта, он упорно боролся за… свои исследования, не считаясь… с репрессиями со стороны руководителей института[6].
…Проектные разработки «пакета» из трех ракет Р-2 и трех ракет Р-3 на многие проблемы… открыли нам глаза».
Работы возглавляемой М.К.Тихонравовым группы инженеров[7] — по высотным ракетным полетам (проект ВР-190, 1945-47 гг.), составным (модульным) дальним ракетам, в том числе схеме «пакет» (1947–1953 гг.), первым автоматическим спутникам Земли (1950–1957 гг.) — оказали сильнейшее (более того, решающее!) влияние на жизненные цели и направление деятельности будущего Главного конструктора ракетно-космических комплексов Сергея Павловича Королёва и руководимого им конструкторского бюро.
Королёв заказывает исследования перспективного технического облика многоступенчатых МБР М.К.Тихонравову и М.В.Келдышу. По завершении работ в 1951 г. выявилась идентичность основных результатов, полученных независимо разработанными методами. Более того, в отличие от «пакета» из унифицированных ракетных блоков с переливом топлива в полете (основная концепция Тихонравова), «мальчикам Келдыша» (будущие чл. — корры АН Д.Е.Охоцимский, Т.М.Энеев и др.) удалось исключительно удачно оптимизировать параметры многоступенчатого изделия из блоков разной массы — именно по этой схеме будет создаваться затем в ОКБ-1 ракета Р-7 (см. главу «Семерка» — самая знаменитая ракета в мире»).
К 1953 г. Королёв принял принципиальное решение о проектировании своей будущей МБР в варианте «пакета» и принялся напористо сколачивать кооперацию. Самое главное: он осознал, что с помощью «семерки» может первым в мире «попробовать на зуб» космос. Для честолюбивого Главного конструктора ОКБ-1 (еще в составе НИИ-88) это был поистине сказочный подарок судьбы. Человек действия, Королёв инициирует «вброс» «наверх» пионерных разработок Тихонравова по спутнику.
По Вашему указанию представляю докладную записку тов. Тихонравова М.К. «Об искусственном спутнике Земли», а также переводной материал о работах в этой области, ведущихся в США. Проводящаяся в настоящее время разработка нового изделия позволяет говорить о возможности создания в ближайшие годы искусственного спутника Земли. Путем некоторого уменьшения веса полезного груза можно будет достичь необходимой… конечной скорости 8000 м/сек… Мне кажется, что в настоящее время была бы своевременной и целесообразной организация научно-исследовательского отдела для проведения первых поисковых работ по спутнику и более детальной разработки комплекса вопросов, связанных с этой проблемой. Прошу Вашего решения.Хотелось бы обратить внимание читателя на КАРДИНАЛЬНЫЕ различия в организационных подходах к созданию спутника в СССР и США. Если в Советском Союзе концепцию ИСЗ безальтернативно — как полет стрелы — творила группа (отдел) М.К.Тихонравова, патронируемая до уровня правительства настойчивым и энергичным С.П.Королёвым, то на Западе «центров кристаллизации идеи ИСЗ» (и соответственно, альтернативных проектов) было несколько.
М.К.Тихонравов и С.П.Королёв (Фото из архива Б.Рябчикова).
В этой связи известная фраза, что «девяносто процентов разговоров о спутнике приходилось на долю США, а сто процентов дела пришлось на СССР», в плане реконструкции событий, является ключом к неожиданному, парадоксальному, но — по зрелому размышлению — вполне закономерному фактическому результату. А именно: если почти о всех западных разработках «доспутниковой эры» известно «много и хорошо», то скупые (и, отметим, идеологически ретушированные) отечественные хроники, скрытые завесой секретности и отсутствием комментариев главных непосредственных участников, не позволяют проникнуть в «творческую кухню» инженерных предтеч «нашего космоса» М.К.Тихонравова, И.М.Яцунского, С.П.Королёва, В.П.Мишина, С.С.Крюкова, Г.Ю.Максимова, Е.Ф.Рязанова, В.П.Глушко…
Можно лишь констатировать, что, не обремененное проблемой оценки вариантов, партийно-политическое и военное руководство СССР гораздо слабее влияло на ход разработки специализированной ракетно-космической техники (РКТ), чем правительственные структуры США. Что, несомненно, явилось благом для Королёва и дополнительным «бюрократическим тормозом» для его заокеанских визави.
Хотелось бы также отметить своеобразный романтический «дух времени» — могучий морально-психологический настрой на ПОБЕДУ при проектировании и создании доселе небывалых летательных аппаратов. Аналогии в мире техники — и в первую очередь, бурный прогресс авиации, которая до 1950-х гг. удваивала скорость самолетов каждые 10 лет — явно свидетельствовали в пользу оптимистов и даже сверхоптимистов. Стремительно росли совершенство и мощь боевых ракет всех классов. Символ прогресса — спутник — незаметно перемещался со страниц научно-фантастической литературы на кульманы конструкторов.
Естественно, речь не шла о пилотируемых космических аппаратах. На первом этапе планировалось создать сравнительно несложные автоматические спутники с простейшими научными приборами и системой передачи информации на Землю. Широко известный проект такого ИСЗ был предложен в 1953 г. профессором Мэрилендского университета Ф.Сингером (S.Fred Singer[9]). Оставалось сделать решающий шаг — заручившись поддержкой правительства, воплотить эти замыслы в жизнь. И если повезет — ПЕРВЫМИ В МИРЕ.
«Семерка» — самая знаменитая ракета в мире.
Первопричиной создания МБР Р-7 явилась военно-политическая задача гарантированной оперативной доставки ядерного заряда на территорию главного потенциального противника — США. А первоосновой конструктивно-компоновочной схемы Р-7 (и РН на ее базе) стала исследовательская работа 1947-48 гг. группы М.К.Тихонравова в НИИ-4 Академии артиллерийских наук Министерства обороны (МО) по применению т. н. «пакетной» схемы компоновки ступеней ракет.
14 июля 1948 г. на научной сессии Академии артиллерийских наук М.К.Тихонравов выступил с докладом «Пути осуществления больших дальностей стрельбы ракетами», где предложил пакетную схему НА БАЗЕ СУЩЕСТВУЮЩИХ ИЗДЕЛИЙ. Главный вывод его доклада таков: дальность полета таких ракет не только принципиально, но уже и технически не ограничена.
Вспоминает А.В.Брыков: «… несколько дней Михаила Клавдиевича не было в институте. Он готовился к докладу… Наконец, он появился с хорошими новостями. — Доклад прошел нормально, — весело рассказывал он Яцунскому. — Меня слушали, некоторые даже внимательно. Однако одобрения я не чувствовал. Большинство ученых тактично молчали. Обсуждения не было…
А вот Сергею Павловичу [Королёву] понравилось направление исследований. Он считает его перспективным и готов субсидировать нашу работу.».
С.П.Королёв, работавший с М.К.Тихонравовым ранее в ГИРДе[10], знал и высоко ценил дар концептуального предвидения, которым обладал Михаил Клавдиевич. Показателен факт: в 1933 г. именно Королёв запускал первую в СССР ракету с гибридным двигателем (жидкий кислород — отвержденный бензин) типа «09» конструкции Тихонравова. И вот теперь — «пакет», обещающий качественный рост могущества МБР на базе уже существующей технологии. Это был основательный, многообещающий и — что немаловажно — совершенно самостоятельный путь.
4 декабря 1950 г. Постановлением СМ СССР задается комплексная поисковая научно-исследовательская работа (НИР) по теме НЗ «Исследование перспектив создания ракет дальнего действия (РДД) различных типов с дальностью полета 5000 — 10000 км с массой боевой части 1-10 т».
13 февраля 1953 г. Постановлением СМ СССР в продолжение темы НЗ задается тема Т1 «Теоретические и экспериментальные исследования по созданию двухступенчатой баллистической ракеты с дальностью полета 7000–8000 км[11]». Цель НИР — разработка эскизного проекта РДД массой до 170 т с отделяющейся головной частью (ГЧ) массой 3 т. В октябре 1953 г. по указанию зам. Председателя Совмина СССР В.А.Малышева проектное задание было изменено: масса ГЧ увеличена до 5,5 т при сохранении дальности полета. Полагают, это решение было принято под влиянием неофициальной информации о техническом облике перспективных термоядерных зарядов, которую предоставил один из идеологов данного направления, будущий академик и правозащитник А.Д.Сахаров. Впоследствии выяснилось, что масса такого заряда может быть многократно уменьшена. А «переразмеренная» МБР идеально подходит как космическая РН. Вот он, счастливый случай!..
Первая атомная бомба СССР; водородные изделия были значительно габаритнее (Фото И.Маринина).
Оптимальной представлялась ракета «пакетной» схемы, состоящая из цилиндрического центрального блока (вторая ступень) и четырех цилиндрических боковых блоков (первая ступень). На всех блоках стояли однокамерные двигатели с газовыми рулями, запускающиеся еще на старте. ГЧ имела диаметр меньше, чем у центрального блока, и была «притоплена» в верхний переходник по типу БРСД Р-5 (8А62).
Хронология создания легендарной «семерки» вкратце такова.
Декабрь 1953 г. — в ОКБ-1 готовится проект Постановления СМ СССР о создании МБР 7Р (позже Р-7). В его тексте уже предлагалось применить ракету 7Р для запусков ИСЗ и КА к другим планетам (в жестко централизованной плановой системе главное для инициации проекта — «раскрутить маховик сверху»).
5 и 30 января, 2 февраля 1954 г. прошли совещания Главных конструкторов[12], на которых были сформулированы технические требования на МБР 7Р, согласованы основные тактико-технические характеристики (ТТХ) и этапы отработки.
Наконец, решающий организационный момент: 20 мая 1954 г. вышло Постановление ЦК КПСС и СМ СССР № 956-408сс о разработке, изготовлении и испытаниях МБРР-7(8К71).
Конструктивно-компоновочная схема ракеты (основные проектанты от ОКБ-1 П.И.Ермолаев и Е.Ф.Рязанов) — двухступенчатая «пакетная» (с продольным делением ступеней). Основными аргументами в пользу именно такой схемы являлись: запуск всех двигателей в «идеальных» условиях на стартовой позиции, относительная простота проектной оптимизации размеров ступеней, в т. ч. с учетом транспортировки их железнодорожным транспортом, и, как потом выяснилось, возможность — путем добавления новых верхних ступеней — создания целой гаммы носителей для решения существенно разных задач.
Внешний вид ракеты к этому времени заметно изменился. В процессе оптимизации аэродинамической и силовой схемы она приобрела знакомые ныне очертания с центральным блоком (ЦБ) «А», похожим на гигантское «веретено», и четырьмя коническими боковыми блоками «Б», «В», «Г» и «Д». Основные компоненты топлива — керосин Т-1 (горючее) и жидкий кислород (окислитель) — располагались, соответственно, в нижнем и верхнем баках каждого блока. Вспомогательные компоненты — жидкий азот для наддува баков и перекись водорода для привода турбонасосного агрегата (ТНА) — размещались в торовых баках непосредственно над рамой двигателя.
Первая ступень (четыре боковых блока) оснащена жидкостными ракетными двигателями (ЖРД) РД-107 (четыре основные и две рулевые камеры, питаемые общим ТНА на каждом блоке). На второй ступени стоит ЖРД РД-108 (четыре основные и четыре рулевые камеры, питаемые общим ТНА). Двигатели РД-107 и РД-108 созданы в ОКБ-456 (руководитель В.П.Глушко), первые варианты рулевых камер к ним — в ОКБ-1 (руководитель разработки М.В.Мельников).
Многокамерные двигатели РД-107 и РД-108 ракеты Р-7 (Фото И.Маринина).
Передача усилий от боковых блоков на центральный осуществляется через силовой пояс с четырьмя башмаками, в пазы которых входят оголовки «боковушек». Эти четыре силовых узла одновременно служат опорными точками для собранной и установленной на старте ракеты.
Внизу, на стыке топливных и двигательных отсеков, имеются поперечные стяжки. При разделении ступеней маршевые двигатели боковых блоков переводятся в режим пониженной тяги, управляющие камеры выключаются, а нижние поперечные стяжки «пакета» разрываются пирозарядами. Тяга двигателей «боковушек» создает момент относительно опорных узлов. «Пакет» раскрывается, блок «А» уходит вперед. Как только сферические оголовки боковых блоков выйдут из башмаков и освободят имеющиеся там электроконтакты, вскрываются сопловые крышки в верхней части «боковушек», и остаточное давление наддува баков кислорода стравливается, создавая при этом небольшую тягу. Боковые блоки разворачиваются и отводятся на безопасное расстояние.
Конструктивно-компоновочная схема первой советской межконтинентальной баллистической ракеты Р-7: 1 — носовой конус с боевой частью; 2, 6 — приборные отсеки; 3 — антенны телеметрической системы; 4 — башмаки силового пояса; 5, 7 — баки окислителя; 8, 9 — баки горючего; 10 — многокамерные маршевые двигатели центрального и боковых блоков; 11 — аэродинамические рули; 12 — рулевые камеры сгорания.
Система управления (СУ) — комбинированная: инерциальная с радиокоррекцией бокового отклонения и дальности полета. В НИИ-885 «инерциалка» создана под руководством Н.А.Пилюгина, система радиоуправления — М.С.Рязанского. Командные приборы разработаны в НИИ-944 (В.И.Кузнецов).
В варианте МБР ракета несла моноблочную ядерную, отделяемую в полете, головную часть. Атомный боезаряд создан в КБ-11 (Арзамас-16) под руководством С.Г.Кочарянца.
Изготовление первых ракет велось на Опытном заводе № 88 в Подлипках (ныне г. Королёв Московской области). Серийное производство было развернуто в 1958 г. на куйбышевском авиазаводе № 1 им. И.В.Сталина. Производство маршевых двигателей первой и второй ступеней осуществлялось тоже в г. Куйбышеве (ныне Самара) на моторостроительном заводе № 24 им. М.В.Фрунзе.
Забегая вперед, отметим: конструктивно-компоновочная схема Р-7 в варианте РН и космический ракетный комплекс на ее основе оказались на редкость удачными и долговечными — они успешно эксплуатируются до сих пор! Более того, архинадежность (многократно доказанная) и относительная дешевизна этой ракетной системы позволяют прогнозировать ее востребованность еще на многие годы.
Вернемся, однако, к событиям середины 1950-х гг. В строчках этой хронологии — ритм эпохи, громадье планов, дерзость и талант «тех, чьих фамилий я не знаю»:
… бесконечно дышит вселенная, мчат ракеты, как сгустки солнца. Это — ваши мечты и прозрения. Ваши знания. Ваши бессонницы…Уже 24 июля 1954 г. эскизный проект (ЭП) МБР Р-7 был завершен. В августе, после рассмотрения и одобрения ЭП Межведомственной экспертной комиссией, выданы технические задания в смежные организации (более 200 НИИ, КБ и заводов 25-ти министерств и ведомств). Следует отметить, что еще 17 марта 1954 г. Постановлением СМ СССР военным и промышленности было предписано к 1 января 1955 г. произвести выбор полигона для испытаний МБР Р-7 (Гл. конструктор С.П.Королёв), межконтинентальных крылатых ракет «Буря» (Гл. конструктор С.А.Лавочкин) и «Буран» (Гл. конструктор В.М.Мясищев) и к 1 марта 1955 г. доложить правительству свои предложения.
Была создана рекогносцировочная комиссия под руководством начальника полигона Капустин Яр генерал-лейтенанта артиллерии В.И.Вознюка. Изучив ряд потенциально пригодных географических пунктов — Государственный центральный полигон (Капустин Яр), Ставропольский край (вблизи населенных пунктов Степное, Дивное), районы Красноводска, Казалинска, Вологды, Марийской АССР, западное побережье Каспийского моря (Дагестан) — комиссия выбрала район вблизи реки Сыр-Дарьи, примыкающий к железнодорожной магистрали Оренбург-Ташкент у полустанка Тюратам (Казахстан).
20 июля на площадке № 1 (старт МБР Р-7) началось строительство. Общий объем земляных работ оценивался в 750 тыс м3. Широко практиковались взрывные методы вскрытия грунта.
Весной 1956 г. на заводе № 88 была осуществлена сборка макетного образца 8К71 (М1-1С) в составе центрального и состыкованного с ним бокового блока. Гигантская по тем временам ракета стала обретать зримые черты.
31 августа была образована Государственная комиссия по проведению летных испытаний МБР Р-7 в составе: В.М.Рябиков (председатель), М.И.Неделин (зам. председателя), С.П.Королёв (технический руководитель испытаний), его заместители на время испытаний В.П.Глушко, Н.А.Пилюгин, М.С.Рязанский, В.П.Бармин, В.И.Кузнецов, члены комиссии И.Т.Пересыпкин, А.Г.Мрыкин, С.М.Владимирский, Г.Р.Ударов, А.И.Нестеренко, Г.Н.Пашков.
Вспоминает С.Н.Хрущев: «…Отец [Н.С.Хрущев], кажется, в январе 1956 г. решил посетить «фирму» Королёва… Поездка несколько раз откладывалась… К Королёву отец ехал не один, собралась представительная компания… Молотов, Булганин и… Первухин.
Добрались быстро… Встречает крепко сбитый невысокий человек — Главный конструктор Королев… Королев пожимает руку гостям и хозяйским жестом предлагает пройти в цех. Отсюда начинается знакомство с пока еще недолгой историей советских ракет, здесь же нам предстоит заглянуть в будущее…
Королев остановился у своего первенца: Р-1. Ракета один к одному повторяла немецкую «Фау-2», детище фон Брауна… У двери в следующее помещение стоял еще один пост охраны, мы входили в святая святых… Увиденная конструкция поразила нас своими размерами. Ярко освещенный колодец цеха заполняла одна-единственная ракета. Ее размеры, контур невольно ассоциировались со Спасской башней Кремля, то же сочетание устремленности к небу с земной кряжистостью фундамента…
Достаточной для решения задачи поражения целей на американской территории в то время считалась дальность в 8000 км. Королев не сомневался, что справится с этой проблемой.
Отец, слушая Сергея Павловича, просто сиял…».
Правительственная поддержка С.П.Королеву была обеспечена.
Сборка «пакета» МБР Р-7 (Фото из архива РКК «Энергия»).
Следует отметить, что первые шесть экземпляров Р-7, предназначенные для летно-конструкторских испытаний (ЛКИ), соответствовали ранней стадии разработки ракеты — основные характеристики были ниже проектных.
К началу ЛКИ на измерительном пункте (ИП-1) полигона были развернуты: аппаратура службы единого времени (СЕВ) «Бамбук», фазометрическая радиоугломерная станция «Иртыш», два радиодальномера «Бинокль», кинотеодолиты KTh-41, кинотелескоп КТ-50, восемь телеметрических станций измерения медленно меняющихся параметров «Трал», шесть телеметрических станций измерения быстро меняющихся параметров РТС-5.
Характерная хвостовая часть «семерки» с многокамерными двигательными установками (Фото И.Афанасьева).
Уже в ходе I этапа испытаний Р-7 в полете планировалось измерять до 700 (!) параметров. Для этого на ракете были установлены системы телеметрических траекторных измерений и регистрации (с соответствующими источниками питания и кабельными проводками) общей массой 2,88 т, в том числе:
— 3 комплекта системы «Трал» на блоках «В», «А» и ГЧ соответственно;
— 2 комплекта системы РТС-5: на блоке «А» и ГЧ;
— по 1 комплекту систем «Факел» и АРГ-1 на ГЧ;
— датчики давлений, температур, вибраций, перегрузок и прочие.
В декабре на полигон прибыло «примерочное» изделие Р-7 (8К71СН). Ракету доставил по железной дороге спецпоезд из семи вагонов (замаскированных под пассажирские с непрозрачными стеклами) — боковые блоки (4 вагона), верхнюю часть ЦБ с кислородным баком, нижнюю часть с керосиновым баком и головную часть.
Для перегрузочных работ и сборки ракеты служил монтажно-испытательный корпус (МИК) с уникальным мостовым краном (точность подачи — до нескольких миллиметров).
Испытания проводились с использованием пультов и стендов, находившихся в комнатах лабораторного корпуса, часть пультов размещалась в монтажном зале рядом с ракетой.
3 марта 1957 г. на полигон прибыла ракета Р-7 для летных испытаний (первые четыре изделия были использованы при стендовых испытаниях, включая два прожига «пакета» 20 февраля и 30 марта[13] 1957 г.).
30 апреля был закончен чистовой цикл испытаний отдельных блоков «пакета» на технической позиции. 5 мая изделие (МБР 8К71 № 5Л с ГЧ М1-5) вывезли на старт.
Стартовая позиция «семерки»: 1 — стартовая система; 2 — фермы обслуживания; 3 — обмывочно-нейтрализационная машина; 4 — заправщик перекиси водорода; 5 — заправщик горючего; 6 — опорная ферма (Рисунок из архива КБОМ).
Следует отметить, что стартовый комплекс ракеты Р-7 (разработчик ГСКБ «Спецмаш», Гл. конструктор В.П.Бармин) не имеет аналогов в мировой практике. Ракета не опиралась на стартовый стол хвостовой частью, как другие подобные изделия, а подвешивалась за «карманы» боковых блоков на специальных фермах с верхним сектором. При движении ракеты вверх фермы выходили из «карманов» и отбрасывались противовесами в стороны. Все это размещалось на поворотном круге для наведения ракеты по азимуту. Тут же находились две нижние и одна верхняя кабель-мачты для подвода коммуникаций.
Поворотный круг диаметром 18 м размещался на отметке «-2 м» на мощной клепаной мостовой конструкции («воротник») с круглым проемом, в котором повисала ракета. Основа сооружения — монолитный железобетонный остов, состоящий из фундаментной плиты, четырех пилонов для опоры верхней части сооружения и наклонного криволинейного отражательного лотка, покрытого чугунными плитами 1x1x0,2 м. Внутри мостовой конструкции, в двух кольцеобразных помещениях — «четырехграннике» и «шестиграннике» — располагались силовые и контрольные кабели, трубопроводы сжатых газов и другое оборудование.
Стартовая система «семерки»: 1 — поворотный круг; 2 — основание; 3 — стрела несущая; 4 — опорная ферма; 5 — силовой пояс; 6 — привод поворотного круга; 7 — нижняя кабельная мачта; 8 — направляющее устройство; 9 — верхняя кабельная мачта (Рисунок из архива КБОМ).
Пункт управления предстартовыми операциями и запуском ракеты находился в подземном бункере на глубине около 8 м в 200 м от старта. В самом большом из пяти помещений, снабженном двумя морскими перископами, вдоль стен были установлены пульты контроля боковых и центрального блока, контроля и зарядки интеграторов, пожаротушения, а позже и пульт спутника. Второе большое помещение предназначалось для членов Госкомиссии по испытаниям Р-7, почетных гостей и Главных конструкторов. Оно также имело два перископа. В остальных помещениях бункера размещалась контрольная аппаратура систем телеметрии, управления заправкой, стартовыми механизмами, вспомогательные комнаты для связистов и охраны.
Из бункера выдавались команды готовности на полигонный испытательный комплекс, базы падения и другие привлекаемые к работе средства. С ИП-1 в бункер шел телеметрический репортаж о предстартовом состоянии бортовых систем, пуске и полете изделия.
15 мая 1957 г. в 19:00 по местному времени состоялся первый старт ракеты Р-7. Кнопку «Пуск» нажал инженер-подполковник Е.И.Осташев. Ракета ушла со старта нормально. Управляемый полет продолжался до 98-й секунды. Затем тяга двигательной установки (ДУ) блока «Д» резко упала, и последний без команды отделился от ракеты. На 103-й секунде из-за превышения допустимого коридора отклонения углов от программных прошла команда аварийного выключения двигателей. Изделие упало, пролетев около 300 км.
Кадры из кинограммы запуска: 1 — Р-7 подготовлена к старту… 2 — отходят фермы обслуживания… 3 — двигатели «пакета» запускаются и выходят на предварительную ступень тяги… 4 — режим промежуточной и, далее, главной тяги. Через несколько мгновений — подъем!
Государственная комиссия действовала оперативно, и руководителям страны поступила телеграмма следующего содержания:
О причинах ненормального полета ракеты Р-7 при первом экспериментальном пуске 15 мая и о мероприятиях, проведенных по подготовке к пуску второй ракеты. 1. В результате тщательного анализа всех расшифрованных телеметрических записей и изучения других материалов, а также осмотра собранных блоков ракеты, которые найдены полностью, установлено, что непосредственной причиной аварии в полете является возникновение пожара в одном из четырех блоков первой ступени ракеты. Пожар произошел из-за появления негерметичности в керосиновых коммуникациях высокого давления двигательной установки… 2. На основе материалов технического анализа первого пуска проведены следующие мероприятия по подготовке второй летной ракеты: А) приняты меры по ужесточению методов контроля коммуникаций на герметичность путем повышения давления воздуха при пневмоиспытаниях; Б) в целях защиты от высокой температуры хвостовые отсеки оклеены двумя слоями стеклоткани и частично покрыты листами нержавеющей стали; В) одновременно произведено дополнительное упрочнение хвостовых отсеков блоков ракеты путем установки кронштейнов, укрепляющих днище ракеты; Г) на стартовой позиции, в целях ослабления влияния пламени на хвост ракеты в момент старта, установлены водяные форсунки, распыляющие воду под давлением 18 атм. Эта система была подвергнута предварительной проверке с установкой на стартовой позиции макетной ракеты и включением в ней зажигательных устройств. Проведен также и ряд других мероприятий. 3. В настоящее время заканчивается работа по подготовке второй летной ракеты на технической позиции, и 5 июня она будет вывезена на стартовую позицию. Пуск второй ракеты намечается на 11–16 июня.Вторая попытка также не принесла успеха — трижды в период 10–11 июня давали команду «Пуск», но ракета Р-7 № 6Л (ГЧ М1-6) так и не оторвалась от стартового устройства.
12 июля состоялся пуск ракеты Р-7 № 7Л (ГЧ Ml-7), который закончился аварией. Ее предыстория такова: просмотровая и репортажная группы со станции «Трал» ИП-1 доложили в бункер С.П.Королёву, что «минус» бортовой батареи находится на корпусе. Была объявлена 30-минутная задержка. Королёв, посовещавшись, посчитал, что это отказ датчика (ранее имевший место), и принял решение пускать. В полете ракета стала вращаться вокруг продольной оси, превысив разрешенный допуск в 7°. Автоматика произвела аварийное выключение двигателей. На 32,9 сек «пакет» разрушился. Блоки упали примерно в 7 км от старта и взорвались.
Третий неудачный пуск С.П.Королёв переживал особенно тяжело, полагая, что уход ракеты «за бугор» целиком на его совести. «Преступники мы, целый поселок выбросили на ветер», — эти слова приписывают именно ему (первый экземпляр Р-7 стоил около 100 млн. рублей, второй — 40 млн. рублей, последующие дешевле).
21 августа в 15:25 состоялся первый успешный запуск изделия 8К71 № 8Л с ГЧ M1-9. Ракета штатно отработала активный участок траектории. ГЧ отделилась, достигла заданного района п-ва Камчатка, вошла в атмосферу и на высоте ~10 км разрушилась от термодинамических нагрузок.
27 августа появилось сообщение ТАСС о создании в Советском Союзе сверхдальней многоступенчатой МБР[14]:
На днях осуществлен запуск сверхдальней, межконтинентальной, многоступенчатой баллистической ракеты. Испытания ракеты прошли успешно, они полностью подтвердили правильность расчетов и выбранной конструкции. Полет ракеты происходил на очень большой, еще до сих пор не достигнутой высоте. Пройдя в короткое время огромное расстояние, ракета попала в заданный район. Полученные результаты показывают, что имеется возможность пуска ракет в любой район земного шара. Решение проблемы создания межконтинентальных баллистических ракет позволит достигать удаленных районов, не прибегая к стратегической авиации, которая в настоящее время является уязвимой для современных средств противовоздушной обороны. Учитывая огромный вклад в развитие науки и большое значение этого научно-технического достижения для укрепления обороноспособности Советского государства, Советское правительство выразило благодарность большому коллективу работников, принимавших участие в разработке и изготовлении межконтинентальных баллистических ракет и комплекса средств, обеспечивающих их запуск.7 сентября 1957 г. состоялся второй успешный пуск изделия 8К71 (№ 9 с ГЧ M1-10), головная часть при этом также разрушилась в атмосфере. Стало ясно, что предстоит кардинальная доработка ГЧ, но к запуску спутника ракета была готова.
22 сентября на полигон пришло изделие 8К71ПС со спутником ПС (изделие M1-ПС), и началась подготовка к запуску первого ИСЗ.
Ракета-носитель 8К71ПС представляла собой значительно облегченную модификацию раннего варианта опытной МБР Р-7. Макетная ГЧ вместе с измерительными системами была снята и заменена коническим переходником «под спутник». С центрального блока сняли радиоотсек с системой радиоуправления общей массой — 300 кг, поскольку не было нужды в высокой точности выведения полезной нагрузки. Демонтировали соответствующие кабельные проводки, часть аккумуляторных батарей, радиотелеметрическую систему РТС-5. В верхней части бака окислителя ЦБ сделали противосопло для торможения блока и увода его в сторону после сброса головного обтекателя и ИСЗ.
Первые «семерки»: 1 — 8К71 для летных испытаний; 2 — 8К71ПС с Первым спутником; 3 — 8К71ПС со Вторым спутником; 4 — 8А91 с Третьим спутником; 5 — 8К71 с первым штатным вариантом ГЧ; 6 — 8К71 с облегченной ГЧ.
Модифицированные двигатели 8Д74ПС (РД-107) боковых блоков с 100-й секунды полета переходили на режим первой промежуточной ступени тяги (60,5 тс), чтобы затянуть процесс отделения «боковушек» на большую высоту и снизить таким образом динамические нагрузки на облегченный центральный блок в момент разделения. Модифицированный двигатель 8Д75ПС (РД-108) центрального блока отключался без конечной ступени тяги, по выработке одного из компонентов топлива. Соответственно, автоматика отключения двигателя стала существенно проще. Чтобы гарантировать отделение обтекателя и спутника, этот сигнал был задублирован от командного токораспределителя на момент времени Т+310 с.
На центральном блоке «А» был установлен развертываемый уголковый отражатель, что позволяло точнее определить параметры его орбиты.
В результате, начальная масса изделия уменьшилась с 280 до 272,83 т, а масса в момент отрыва от стартового устройства составила 267 т. Длина РН (с ПС) была 29,167 м, тяга ДУ на старте — 397 тс. Следует отметить, что изменения в комплектации РН и замена «объекта Д»[15] на ПС, не имевшего на борту траекторных телеметрических устройств, заметно усложнила работу и полигонного, и командно-измерительного комплекса. Вместе с ГЧ демонтировали единственную внешнетраекторную систему «Факел», что оставило РН без надежных траекторных измерений, проводившихся ранее станциями «Бинокль»[16] и «Иртыш». Радиолокационные станции (РЛС) П-30, установленные на НИПах[17], не имели штатных средств документирования информации; попытки же вести фотозаписи обзорных экранов надежных результатов не давали. Определение траектории спутника могли осуществлять радиопеленгаторы военно-воздушных сил (ВВС), гражданского воздушного флота и других ведомств, но их точность была невысока.
В связи с этими обстоятельствами было принято решение определять факт выхода ИСЗ и последней ступени РН на орбиту по «нормальности» стабилизации изделия в полете и по прохождению главной команды на выключение двигателя в заданном временном интервале (фиксировалась с помощью системы «Трал» ИП-1 и ИП-6 полигона), а также по включению радиомаяка ПС после его отделения. На орбитальном участке полета ИСЗ траекторные измерения должны были вести оптические обсерватории АН СССР и радиопеленгаторы.
Настройка системы управления РН производилась для выведения ИСЗ на орбиту с высотой перигея 223 км, высотой апогея 1450 км, периодом обращения 101,5 мин.
Рисунок А.Соколова.
4 октября в 22 ч 28 мин 34 сек по московскому времени (5 октября в 00:28:34 по местному времени) был осуществлен запуск ПЕРВОГО В МИРЕ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ («простейший спутник» ПС) первой космической ракетой-носителем Р-7 (изделие 8К71ПС).
Рисунок А.Соколова.
Через 295,4 сек после старта спутник и центральный блок РН были на орбите. Это был третий успешный (а всего седьмой) пуск ракеты Р-7.
Рисунок А.Соколова.
Боковые блоки отделились на 116,38 сек полета. Главная команда на выключение ДУ второй ступени прошла на 294,6 сек; в этот момент ступень РН с ИСЗ имела скорость в стартовой системе координат (с учетом импульса последействия) 7780 м/с, угол наклона вектора скорости к местному горизонту 0°24′. Параметры орбиты:
— наклонение — 65,1°;
— высота перигея — 228 км;
— высота апогея — 947 км;
— период обращения — 96,17 мин[18].
Отделение ИСЗ прошло на 314,5 сек после старта, через 19,9 сек после прохождения главной команды (расчетная задержка 18–20 сек). После паузы в 20 сек (показавшейся вечностью!) на приемнике Р-250, установленном в правой половине финского домика ИП-1 и обслуживаемом мл. лейтенантом-инженером В.Г.Борисовым, были приняты сигналы «маяка». Прием длился около двух минут, пока ИСЗ не ушел за горизонт. Своим всемирно знаменитым «бип-бип» первый спутник возвестил о начале новой — космической — эры человечества. По своей цивилизационной значимости это научно-инженерное достижение не имеет равных в истории. И его свершили мы, русские!
Подстраховка.
Ажиотаж вокруг запусков первых искусственных спутников Земли не прошел мимо молодого ракетного ОКБ-586 М.К.Янгеля (г. Днепропетровск, Украина), и первым этапом «дороги в космос» этого коллектива явилась «подстраховка» носителя Р-7 ракетой Р-12.
Не секрет, что начало летных испытаний МБР Р-7 было трудным. Только с четвертой попытки — в августе 1957 г. — королёвская ракета «пошла». А янгелевская Р-12 с первого пуска в июне того же года продемонстрировала свою успешность.
К тому времени проявились подробности американского плана Vanguard, предусматривающего создание и запуск сверхлёгкого (1-10 кг) спутника в период проведения Международного геофизического года (МГГ). Невольно оглядываясь на американцев, руководители советской промышленности, и в первую очередь Д.Ф.Устинов, пришли к выводу, что, используя имеющийся научно-технический задел, можно в сжатые сроки сделать легкий носитель, более массовый и дешевый, чем Р-7.
Очевидным казался следующий подход: создать РН, комбинируя уже имеющиеся или разрабатываемые ракеты. По такому пути пошли сотрудники ОКБ-1 С.П.Королёва, которые предложили в конце 1956 г., также в качестве «подстраховки» для Р-7, легкий носитель ИСЗ на базе ракеты Р-5. Поскольку номенклатура готовых «изделий» в ту пору была весьма ограничена, в качестве второй ступени они рассматривали свою же ракету Р-11. Однако обе эти машины были далеки от совершенства как ступени РН, и их соотношение в носителе было неоптимальным. Система Р-5/Р-11 явно не могла сообщить ПГ скорость, близкую к первой космической. Максимум, что могло получиться из этого предложения — высотная геофизическая ракета.
Р5/Р11.
Следующий шаг — использовать на данной легкой РН еще одну, новую третью ступень. Однако к тому времени разработчики ОКБ-1 физически не могли реализовать данный вариант — все их силы и время были отданы работам по «семёрке».
В то же время создаваемая в ОКБ-586 новая ракета Р-12 вполне могла претендовать на роль ступени космической РН. В 1956 г., возвратившись из очередной командировки в Москву, М.К.Янгель собрал совещание с ведущими специалистами ОКБ, где, кроме информации о текущих событиях, объявил: «В будущем году Королёв будет запускать искусственный спутник [Земли] на «семёрке». Мне предложено [Д.Ф.Устиновым] подстраховать эту работу. Думаю, задачу можно решить, если на нашу Р-12 поставить вторую ступень».
Как известно, имея готовую «базовую» ракету, можно «надстраивать» ее вниз, подводя под нее «стартовые» ступени, или вверх, устанавливая «высотные» (вторые, третьи, четвертые…) ступени. Именно это имел ввиду М.К.Янгель, когда говорил о «подстраховке».
Учитывая утвержденные «наверху» жесткие сроки запуска первого ИСЗ, ОКБ-586 решило опираться на имеющееся производство, аппаратуру, стартовый комплекс… А самое главное, на «родную» ракету как первую ступень РН.
В январе 1957 г. были начаты проектно-поисковые работы. Проработки показали, что на ракете Р-12 (с энергетикой в два раза больше, чем у Р-5) «не смотрится» вторая ступень из номенклатуры готовых «изделий»: ни одна из существующих небольших ракет (зенитных и баллистических) в совокупности с янгелевской машиной не могла развить первую космическую скорость. Не прошел и укороченный вариант Р-12: не оказалось подходящего высотного двигателя.
Следовательно, вторую ступень надо было проектировать «с нуля».
Между тем, при создании небольшой ракеты существует одно принципиальное ограничение — т. н. масштабный фактор. Реальные комплектующие изделия — двигатель, система управления, силовые приводы и т. п. — имеют вполне определенные габаритно-массовые параметры, которые не всегда можно уменьшить «пропорционально» размерности ракеты. Это равно относится как к жидкостным, так и к твердотопливным машинам.
В любом случае, работа по «подстраховке» Р-7, не являясь приоритетной для ОКБ-586, объективно не могла дать быстрых положительных результатов. Даже когда состоялись пуски легких американских носителей, создание легкой советской РН — в свете достижения новых космических рекордов того времени — не казалось актуальным. В самом же ОКБ-586 существовало весьма «спокойное» отношение к собственному космическому «коню» — достаточно сказать, что Главный конструктор М.К.Янгель лишь в 1959 г. выступил с предложением разработки ракеты-носителя 63С1 на базе боевой БРСД Р-12.
Первая ступень двухступенчатого носителя 63С1 была сделана на базе боевой ракеты Р-12 (Фото И.Афанасьева).
Имя собственное: Первый, Второй, Третий.
Исторически сложилось так, что образцы принципиально новой техники если и не рождались, то обретали жизнь в развитых странах Запада — достаточно вспомнить пароход, паровоз, автомобиль, телефон, самолет, телевизор, атомную бомбу и т. д. Спутник же не имел прототипов, он был совершенно новым и УНИКАЛЬНЫМ творением; его — как и космическую РН — неоткуда было скопировать.
Поэтому когда Первый ИСЗ прочертил небо Земли, на всех языках зазвучали — как самые главные — два ключевых слова: «РОССИЯ, СПУТНИК!».
Вот вехи на этом пути.
16 марта 1954 г. в Отделении прикладной математики АН СССР (у М.В.Келдыша) состоялось первое специализированное совещание по определению круга научных задач, решаемых с помощью ИСЗ. Президент АН СССР А.Н.Несмеянов данное новое направление одобрил и поддержал.
Два месяца спустя С.П.Королёв представил министру оборонной промышленности Д.Ф.Устинову докладную записку «Об искусственном спутнике Земли», подготовленную М.К.Тихонравовым[19].
Не меньшую роль, чем научно-технические возможности, играли политические мотивы. В контексте глобального противостояния с Западом и реакции СССР на заявление президента Соединенных Штатов Д.Эйзенхауэра (Dwate Aisenhower) от 29 июля 1955 г. о запуске в период Международного геофизического года (1957–1958 гг.) американского спутника — 3 августа академик Л.И.Седов на VI конгрессе Международной астронавтической федерации в Копенгагене объявил о намерении Советского Союза также запустить ИСЗ в течение МГГ.
Через месяц, 3 сентября 1955 г., С.П.Королёв направил Гл. конструкторам и в правительство предварительные характеристики научного спутника массой 1100 кг и план работ по его созданию.
30 января 1956 г. было принято Постановление ЦК КПСС и СМ СССР № 149-88сс, которым предусматривалось создать под ракету Р-7 неориентированный ИСЗ (объект Д) весом 1000–1400 кг с аппаратурой для научных исследований весом 200–300 кг. Срок первого пробного пуска объекта Д — 1957 год.
К концу 1956 г. выяснилось, что намеченные планы запуска ИСЗ находятся под угрозой срыва из-за трудностей в создании научной аппаратуры и более низкой (304 сек вместо расчетных 309–310) удельной тяги двигателей РН. Правительство установило новый срок запуска объекта Д — апрель 1958 г.
И здесь надо отдать должное мудрости, исторической прозорливости, энергии и изобретательности команды С.П.Королёва: в ноябре 1956 г. ОКБ-1 внесло предложение о срочной разработке и запуске т. н. «простейшего спутника» (объект ПС) массой порядка 100 кг в апреле-мае 1957 г. во время летных испытаний Р-7. Предложение было принято, и 15 февраля 1957 г. вышло Постановление, предусматривающее запуск простейшего неориентированного ИСЗ на орбиту, проверку возможности наблюдения за спутником и приема радиосигналов с его борта. Запуск ИСЗ разрешался только после одного-двух стартов ракеты Р-7 с положительным результатом.
Ведущим конструктором по аппарату ПС был назначен М.С.Хомяков. В разработке проектной и конструкторской документации принимали участие К.Д.Бушуев, С.О.Охапкин, С.С.Крюков, М.К.Тихонравов, Н.А.Кутыркин и др.
Проектная схема отделения спутника «объект Д» от ракеты-носителя: 1 — носовые створки обтекателя; 2 — спутник; 3 — хвостовые щитки обтекателя; 4 — последняя ступень РН.
Что касается концепции ПС, то она выкристаллизовалась как ИСЗ-радиомаяк, сферическая форма которого идеально подходила (как исследовательская модель) для определения параметров плотности верхней атмосферы. При этом оригинальная «полусферическая» схема теплообмена аппарата с окружающей средой («лоб» — теплоизолирован, «тыл» — радиационный теплоизлучатель; требуемая ориентация ИСЗ при наличии атмосферы заметной плотности обеспечивается устойчивой статической балансировкой за счет «откинутых назад» антенн) позволяла увеличить время активного существования спутника в случае, если бы его торможение оказалось достаточно интенсивным.
Одна из первых конструктивных схем «простейшего спутника».
Формирование конструктивно-компоновочной схемы «простейшего» ИСЗ на базе стандартных приборов и блоков давало массу спутника около 300 кг, что представлялось чрезмерным. Поэтому в процессе проектирования ПС были предложены (и затем реализованы) следующие технические решения:
— химическую батарею электропитания радиопередатчика изготовить в виде кольца, размещенного в корпусе (шаре-контейнере) диаметром около 500 мм;
— смонтировать радиопередатчик внутри батареи, используя стенки кольца в качестве воздуховода системы терморегулирования;
— антенны, размещенные снаружи шара-контейнера, вывести поверх обтекателя второй ступени ракеты, упростив тем самым схему разделения ИСЗ и РН.
К 1 февраля 1957 г. были согласованы габаритно-установочные чертежи передатчика, к середине февраля — разработан макет ПС для проведения электрических испытаний передатчика с имитаторами антенн[20].
Рисунок из архива РКК «Энергия».
Простейший спутник был выполнен как герметичный контейнер сферической формы диаметром 580 мм, состоящий из двух силовых полуоболочек (конструкционный материал — алюминиевый сплав АМг-6 толщиной 2 мм). Передняя полуоболочка имела меньший радиус и прикрывалась полусферическим внешним экраном (R = 580 мм) толщиной 1 мм для обеспечения «теплоизолирующего» режима. Задняя силовая полуоболочка, отделенная от бортовых систем внутренним экраном, являлась одновременно радиационной поверхностью системы терморегулирования. Герметичный объем заполнялся сухим азотом при давлении 1,3 атм. Соединение полуоболочек осуществлялось посредством 36 шпилек М8х1,25. Герметичность стыка обеспечивала прокладка из вакуумной резины. Передняя полуоболочка имела четыре гнезда для крепления антенн со штуцерами гермовводов и фланец заправочного клапана. На задней полуоболочке располагались фланец испытательного системного разъема и блокировочный пяточный контакт, включающий автономное бортовое электропитание после отделения ПС от РН.
Четыре антенны (две длиной 2,4 м, две — 2,9 м) монтировались на передней («верхней») полуоболочке. Специальный пружинный механизм разводил антенны на угол 35° от продольной оси ИСЗ после его отделения от РН (таким образом формировалась заданная диаграмма их излучения).
«Начинка» Первого в мире (он же «простейший») искусственного спутника Земли (Фото И.Маринина).
Поверхность корпуса ПС полировалась и подвергалась специальной обработке, чтобы придать ей заданные значения коэффициента поглощения солнечной радиации AS и коэффициента собственного излучения ξ (внешний экран передней полуоболочки: AS= 0,2–0,25; снаружи ξ = 0,05-0,1; изнутри ξ = 0,8–0,9; задняя полуоболочка: AS= 0,23-0,27; ξ = 0,35-0,45).
Тепловой режим обеспечивался вентилятором, включавшимся от термореле при температуре равной или выше 30 °C. При этом циркулирующий азот осуществлял передачу тепла «холодной» задней полуоболочке, излучавшей избыток тепла в космическое пространство. При понижении температуры азота до 20–23 °C вентилятор выключался, что приводило — в отсутствие конвекции — к значительному увеличению теплового сопротивления между радиационной поверхностью и внутренним объемом ПС — и таким образом предотвращало дальнейшее снижение температуры.
Внутри гермоконтейнера находились: радиопередатчики мощностью 1 Вт и массой 3,5 кг (разработчик В.И.Лаппо из НИИ-885); блок питания из трех батарей на основе серебряно-цинковых элементов массой 51 кг (разработчик Институт источников тока, директор Н.С.Лидоренко), срок их непрерывной работы — не менее двух недель[21]; дистанционный переключатель; вентилятор системы терморегулирования; сдвоенное реле системы терморегулирования; контрольное термореле и барореле. Радиопередатчики работали на частотах 20,005 и 40,002 МГц (длины волн, соответственно, 15 и 7,5 м) импульсами длительностью от 0,2 до 0,6 сек (настроечное значение 0,4 сек), импульсы одного передатчика в паузах другого. При замыкании и размыкании контактов датчиков контроля давления (барореле с настройкой р=0,35 атм) и температуры (сдвоенное термореле с настройкой Т1=+50 °C, Т2=0 °C) изменялись частоты сигналов и соотношения между их длительностью и паузами, что обеспечивало «диапазонный» контроль герметичности и температуры внутри ПС.
Общая масса ПС в сборе составляла 83,6 кг.
Головной обтекатель ПС (Фото И.Маринина).
Во время выведения спутник находился под сбрасываемым коническим обтекателем высотой 80 см с углом при вершине 48° и удерживался 8-ю зацепами. Стержни антенн прижимались к наружной поверхности конического переходника РН приливами обтекателя. Отделение ПС осуществлялось пневмотолкателем с относительной скоростью 2,73 м/с. Как дублирующее было предусмотрено пиротехническое устройство, обеспечивающее отделение ИСЗ со скоростью 1,45 м/с. Одновременно пружинным толкателем со скоростью 0,643 м/с производилось отделение головного обтекателя (ГО). Вот таким — концептуально весьма непростым — был наш «простейший» первенец!
Забегая вперед, отметим: реализованный в конструктивно-компоновочной схеме ПС подход «гермоконтура с «земным» давлением, температурой, минимальной влажностью и приборным оборудованием из «стандартных» блоков на долгие десятилетия — вплоть до 1990-х гг. — оставался характерным для отечественных беспилотных КА[22].
Сжатые сроки разработки и создания аппарата ПС диктовали очень высокий темп работ, когда детали шли в производство «прямо с кульмана». Основные трудности встретились при изготовлении гидровытяжкой сферических полуоболочек, сварке их со шпангоутом и при полировке наружных поверхностей. При отработке конструкции ПС проводилось макетирование размещения бортового оборудования и аппаратуры, рентген-контроль сварных швов, проверка сборки на герметичность посредством гелиевого течеискателя, исследование тепловых режимов в условиях, имитирующих космическую среду.
В тот же период, с марта 1957 г., начался выбор и определение параметров траектории активного участка первой «космической» ракеты 8К71ПС.
В марте 1957 г. Центральное разведывательное управление США подготовило ежегодную оценку уровня ракетной техники СССР. Баллистические ракеты Р-1, Р-2, Р-5 и Р-12 описаныдостаточно полно. Имеется информация о существовании МБР Р-7, но ее конфигурация и принципиальные технические решения неизвестны. Запуск первого советского ИСЗ ожидается до конца 1957 г., но никакой ответной реакции нет. Во всех случаях стартовая масса ракет и боеголовок занижена, а точность переоценена.
В апреле-мае прошли проверки характеристик излучения радиопередатчиков ПС, подвешенного на тросе длиной 200 м под вертолетом.
Летом 1957 г. в цехе 39 завода № 88 в Подлипках были собраны первые блоки РН 8К71ПС и проведены испытания системы отделения обтекателя и ИСЗ от центрального блока «А».
3 сентября 1956 г. постановлением СМ СССР № 1241-632 головной организацией по созданию наземного командно-измерительного комплекса (КИК) для обеспечения полета первого ИСЗ в 1957 г. был определен НИИ-4 МО. Решение о возложении на МО новых функций принял министр обороны Маршал Советского Союза Г.К.Жуков. Было предписано организовать семь наземных измерительных пунктов: НИП-1 (ИП-1Д) на полигоне Тюратам рядом с ИП-1 полигона, НИП-2 — ст. Макат, НИП-3 — ст. Сары-Шаган, НИП-4 — г. Енисейск, НИП-5 — п. Искуп, НИП-6 — п. Елизово, НИП-7 — п. Ключи.
17 сентября 1957 г. на собрании, посвященном столетию со дня рождения К.Э.Циолковского, в Колонном зале Дома Союзов выступил мало кому в то время известный член-корреспондент АН СССР Сергей Павлович Королёв. В самом начале своего выступления он, как бы между прочим, сказал: «В ближайшее время с научными целями в СССР и США будут произведены первые пробные пуски искусственных спутников Земли»… Королёв знал, что говорил: уже 20 сентября на космодроме состоялось заседание специальной комиссии, где была подтверждена готовность РН и ИСЗ к старту. Тогда же было принято решение сообщить о запуске спутника только после его первого оборота вокруг Земли. В этой связи отметим, что сам факт подготовки к запуску ИСЗ секретом не являлся: в журнале «Радио» № 6за 1957 г. (т. е. еще до запуска Первого спутника) были опубликованы радиочастоты и вид сигналов с борта будущего советского ИСЗ.
И вот — СВЕРШИЛОСЬ!
Сообщение ТАСС. В течение ряда лет в Советском Союзе ведутся научно-исследовательские и опытно-конструкторские работы по созданию искусственных спутников Земли. Как уже сообщалось в печати, первые пуски спутников в СССР были намечены к осуществлению в соответствии с программой научных исследований Международного геофизического года. В результате большой напряженной работы научно-исследовательских институтов и конструкторских бюро создан первый в мире искусственный спутник Земли. 4 октября 1957 года в СССР произведен успешный запуск первого спутника. По предварительным данным, ракета-носитель сообщила спутнику необходимую орбитальную скорость около 8000 метров в секунду. В настоящее время спутник описывает эллиптические траектории вокруг Земли, и его полет можно наблюдать в лучах восходящего и заходящего Солнца при помощи простейших оптических инструментов (биноклей, подзорных труб и т. п.). Согласно расчетам, которые сейчас уточняются прямыми наблюдениями, спутник будет двигаться на высотах до 900 километров над поверхностью Земли; время одного полного оборота спутника будет 1 час 35 минут, угол наклона орбиты к плоскости экватора равен 65°. Над районом города Москвы 5 октября 1957 года спутник пройдет дважды — в 1 час 46 мин. ночи и в 6 час. 42 мин. утра по московскому времени. Сообщения о последующем движении первого искусственного спутника, запущенного в СССР 4 октября, будут передаваться регулярно широковещательными радиостанциями. Спутник имеет форму шара диаметром 58 см и весом 83,6 кг. На нем установлены два радиопередатчика, непрерывно излучающие радиосигналы с частотой 20,005 и 40,002 мегагерц (длина волны около 15 и 7,5 метра соответственно). Мощности передатчиков обеспечивают уверенный прием радиосигналов широким кругом радиолюбителей. Сигналы имеют вид телеграфных посылок длительностью около 0,3 сек, с паузой такой же длительности. Посылка сигнала одной частоты производится во время паузы сигнала другой частоты. Научные станции, расположенные в различных точках Советского Союза, ведут наблюдение за спутником и определяют элементы его траектории. Так как плотность разреженных верхних слоев атмосферы достоверно неизвестна, в настоящее время нет данных для точного определения времени существования спутника и места его вхождения в плотные слои атмосферы. Расчеты показали, что вследствие огромной скорости спутника в конце своего существования он сгорит при достижении плотных слоев атмосферы на высоте нескольких десятков километров. В России еще в конце XIX века трудами выдающегося ученого К. Э. Циолковского была впервые научно обоснована возможность осуществления космических полетов при помощи ракет. Успешным запуском первого созданного человеком спутника Земли вносится крупнейший вклад в сокровищницу мировой науки и культуры. Научный эксперимент, осуществляемый на такой большой высоте, имеет громадное значение для познания свойств космического пространства и изучения Земли как планеты нашей Солнечной системы. В течение Международного геофизического года Советский Союз предполагает осуществить пуски еще нескольких искусственных спутников Земли. Эти последующие спутники будут иметь увеличенные габариты и вес, и на них будет проведена широкая программа научных исследований. Искусственные спутники Земли проложат дорогу к межпланетным путешествиям и, по-видимому, нашим современникам суждено быть свидетелями того, как освобожденный и сознательный труд людей нового, социалистического общества делает реальностью самые дерзновенные мечты человечества.Запуск первого в мире искусственного спутника Земли.
Первый спутник летал 92 дня (до 4 января 1958 г., 1440 оборотов), блок «А» — 60 дней (до 2 декабря 1957 г., 882 оборота вокруг Земли), после чего они вошли в атмосферу и сгорели. Радиопередатчики ПС работали 3 недели. Спутник наблюдался на небе как объект 6-й, а блок «А» — 1-й звездной величины.
Научно-инженерные задачи полета ПС были выполнены полностью. Радиопередатчики спутника обеспечили возможность систематических наблюдений за его орбитой. При этом выбор длин волн и большая мощность передатчиков (на волне 15 м радиосигналы ИСЗ принимались на расстоянии до 10–12 тыс км) позволили провести ряд исследований по распространению радиоволн в ионосфере. Характер торможения ИСЗ и последней ступени РН верхней атмосферой позволил оценить ее плотность. Был экспериментально достигнут расчетный температурный диапазон внутри термоконтейнера, подтверждены работоспособность и соответствие расчетным параметрам выбранной конструктивно-компоновочной схемы ИСЗ.
Наконец, самое главное.
Политический и общественный резонанс в мире, вызванный запуском ПЕРВОГО ИСКУССТВЕННОГО СПУТНИКА Земли, был ошеломляющим.
Госкомиссия по испытаниям ракеты Р-7 и первого спутника, а также руководители испытаний. Площадка 10 полигона Тюратам, осень 1957 г. Слева направо сидят: Г.Р.Ударов, А.И.Семёнов, А.Г.Мрыкин, М.В. Келдыш, С.П.Королёв, В.М.Рябиков, М.И. Неделин, Г.Н. Пашков, М.С. Рязанский, К.Н.Руднев, В.П.Глушко, В.П.Бармин, В.И.Кузнецов; стоят: П.Е.Трубачёв, Г.А. Тюлин, Н.Н.Смирницкий, Н.А.Пилюгин, А.А.Васильев, В.И.Ильюшенко, А.И. Носов, А.Ф. Богомолов, К.Д. Бушуев, В.И.Курбатов, К.В.Герчик.
Руководство СССР и, прежде всего, лидер страны Н.С.Хрущев с изумлением и восторгом наблюдали, как «оценивающее любопытство западных стран сменяется восхищением, смешанным с завистью» (С.Н.Хрущев). Идеологические клише типа «социализм — это и есть та надежная стартовая площадка, с которой Советский Союз запускает свои космические корабли» мгновенно утвердились в качестве беспроигрышных козырей — как на международной арене, так и в «домашних разборках» (не следует забывать, только-только на XX съезде коммунистической партии был развенчан культ личности И.В.Сталина, затем — едва не удавшийся переворот т. н. «антипартийной группы Маленкова, Молотова, Кагановича и примкнувшего к ним Шепилова»; тройственная агрессия Великобритании, Франции и Израиля против Египта, кровавые события в Венгрии… Мир бурлил, политические страсти бушевали, «холодная» война, казалось, вот-вот перерастет в войну «горячую»… НИКТО из политиков ведущих держав мира даже НЕ ДОГАДЫВАЛСЯ о роли СПУТНИКОВ В ИСТОРИИ).
В США восприняли запуск ИСЗ как удар по своему могуществу и престижу. Устами своего министра обороны американцы вынуждены были констатировать, что «неограниченные цели и полная победа в войне [с СССР] более недостижимы»…
В Соединенных Штатах в одночасье вспыхнула истерия «ракетного отставания». Аналитики ЦРУ, оценив размеры выведенной на орбиту последней ступени РН в 16–17 м (фотограмметрия), с удивлением обнаружили, что не располагают даже концепцией подобной РН (при реконструкции ее облика, например, предполагались параллельно установленные блоки первой и второй ступеней одинаковой (!) длины).
9 октября 1957 г. — через пять дней после запуска Первого ИСЗ — «Правда» писала: «… Для перехода к осуществлению космических полетов с человеком необходимо изучить влияние условий космического полета на живые организмы. В первую очередь это изучение должно быть проведено на животных. Так же, как это было на высотных ракетах, в Советском Союзе будет запущен спутник, имеющий на борту животных в качестве пассажиров, и будут проведены детальные наблюдения за их поведением и протеканием физиологических процессов».
Такая программа казалась логичной, принципиально важной и достаточно сложной технически. Но никто не предполагал, что это программа не грядущих лет, а ближайших недель…
В распоряжении ОКБ-1 находились прошедшая стендовые испытания вторая ракета-носитель 8К71ПС и дублирующий комплект ПС, созданные по Постановлению правительства о запуске «простейшего спутника». На базе этой матчасти можно было попытаться закрепить успех Первого ИСЗ.
Наш второй искусственный спутник был создан как импровизация, фактически без разработки «нормальной» технической документации и всего за 22 дня (рекорд, вполне достойный книги Гиннеса).
После запуска Первого спутника Н.С.Хрущев не раз прибегал к помощи «космических козырей» в политической игре с Западом (Фото из Библиотеки Конгресса США).
В этой связи небезынтересно привести воспоминания сына Н.С.Хрущева — Сергея, инженера-ракетчика («Никита Хрущев: кризисы и ракеты»):
«…Королёв не зря торопился первым запустить спутник. Теперь настал час его анонимного всемирного торжества — он впереди планеты всей…
Возвратившись [из Киева] в Москву, отец получил предложения Королёва о запуске новых двух спутников: одного — массой в несколько сотен килограммов — немедленно, другого — еще тяжелее, около тонны, — через полгода. Успех окрылил Королёва, он планировал форсировать двигатели и на модернизированной «семерке» начать запуски сверхтяжелых спутников и даже межпланетных зондов.
К этой новой ракете Королёв теперь примеривал свои полумечты-полупланы.
Отец в принципе поддержал Сергея Павловича. Он тоже «заболел» космосом. Однако, стоя обеими ногами на земле, поинтересовался, не повредит ли такой оборот испытаниям боевой ракеты. Пропаганда пропагандой, наука наукой, но оборона — прежде всего. Королёв заверил: ни в коей мере. Испытания уложатся в год, возможно, чуть больше. Несоразмерил он свои силы, ошибся или покривил душой, но «семерку» удалось принять на вооружение лишь через три с лишним года, в начале 1960-го.
Второй спутник Сергей Павлович предложил запустить к празднику, в этом году исполнялась круглая дата — сорокалетие революции. Отец засомневался, не принесла бы спешка вреда, вместо подарка получим сплошное расстройство. Королёв уговорил его. Он не сомневался в успехе, ну а ежели что, то просто промолчим. Дома отец поделился со мной новостью: к празднику на орбиту выйдет новый спутник с собакой на борту.
Хочу прояснить одно недоразумение. Не раз в воспоминаниях свидетелей и участников событий тех лет мне приходилось читать, как Королёв передавал своим коллегам то пожелания, а то и требования отца запустить спутник или космический корабль к очередной знаменательной дате. В самой такой постановке с точки зрения принятых у нас стереотипов нет ничего предосудительного. Все эти годы мы сдавали дома, заводы, мосты к дате. Не было бы ничего удивительного и в подобных просьбах отца, если бы они попросту были. Скорее всего, авторы искренне заблуждаются, память подводит. А возможно, Сергей Павлович, желая прибавить обороты, использовал не только свой авторитет, но и отца.
От отца я не раз слышал о предложениях Королёва запустить что-нибудь новенькое, невиданное к «красному» дню. Желание понятно, а подогнать сроки, особенно если впереди несколько месяцев, несложно. Отец же шутил: «Поспешишь — людей насмешишь». Пока спутники запускались в беспилотных вариантах, его еще удавалось уговорить…[23]»
Подготовка к запуску Второго ИСЗ.
Схема размещения аппаратуры на Втором спутнике: 1 — сбрасываемый защитный конус; 2 — прибор для регистрации УФ и рентгеновского излучения Солнца; 3 — сферический контейнер с радиопередатчиками; 4 — силовая рама; 5 — гермокабина с подопытным животным.
12 октября 1957 г. в ОКБ-1 поступило правительственное задание подготовить запуск второго ИСЗ к 40-летию Великой Октябрьской социалистической революции.
В тот же день было принято решение делать спутник неотделяемым от последней ступени РН, конструктивно на базе сферического гермокорпуса ПС и герметичной кабины животного (ГКЖ) из программы вертикального запуска на ракете Р-2А. Кроме того, в состав ИСЗ вошли прибор СП-65 для изучения рентгеновского и ультрафиолетового (УФ) излучения Солнца, разработанный под руководством профессора С.Л.Мандельштама, прибор для измерения интенсивности космических лучей академика С.Н.Вернова, а также телеметрическая аппаратура «Трал» второй ступени РН.
Радиотелеметрические станции «Трал».
Пульт и фотоблоки станции «Трал».
Идею неотделяемого КА подсказал факт длительного полета центрального блока РН Первого спутника. Упрощение конструкции достигалось также тем, что аппарат собирался по блочной схеме путем закрепления оборудования в передней части ракеты на ферме; в переходнике ЦБ частично утапливалась «изюминка» второго ИСЗ — ГКЖ. Последняя включала аппаратуру контроля жизнедеятельности и обеспечения условий для существования животного — регенеративную установку, кормушку и простейшую систему терморегулирования по типу примененной для Первого ИСЗ. Кабина животного изготавливалась из алюминиевых сплавов. На одной из эллиптических крышек имелся иллюминатор. Регенерация воздуха в ГКЖ обеспечивалась применением специализированных высокоактивных химических соединений щелочных металлов, выделявших необходимый для дыхания животного кислород, поглощавших углекислоту и избыток водяных паров. Регенерирующие вещества в виде пластин размещались в кожухах коробчатого сечения с обеих сторон от подопытного животного. Интенсивность процессов регенерации регулировалась автоматически. Поскольку в условиях невесомости конвекция отсутствует, имелась система принудительной вентиляции.
В конструкцию ЦБ ракеты добавили второе противосопло в баке окислителя, чтобы свести к минимуму угловую скорость вращения после выведения на орбиту.
Решение не отделять КА от носителя позволило использовать телеметрическую аппаратуру «Трал-Ц» второй ступени путем ее программного переключения на спутник после окончания телеметрирования параметров активного участка полета ракеты. При этом потребовалось исключить электромеханический преобразователь напряжения (умформер), который не мог длительное время функционировать в открытом космосе. В течение трех недель, работая практически непрерывно, конструкторы ОКБ МЭИ М.Е.Новиков, С.М.Попов, П.Ж.Крисс и В.И.Глухов изготовили статические полупроводниковые преобразователи питания и трехфазный формирователь опорного напряжения на частоту 500 Гц.
Для реализации расчетного температурного режима переходной отсек ЦБ отполировали, ввели теплоизолирующие прокладки, на блоках питания установили полированные экраны, на телеметрической аппаратуре — медные щиты для отвода тепла. Кроме того, был установлен временной механизм (электрочасы) и коммутационное устройство для включения научной и измерительной аппаратуры над территорией СССР и ее выключения при уходе за пределы страны: считывалась информация об интенсивности солнечного излучения в различных областях спектра; вариации интенсивности первичного космического излучения; характеристики жизнедеятельности животного — движения относительно лотка, частота дыхания (периметр грудной клетки), параметры сердечно-сосудистой системы (артериальное давление и электрокардиограмма). Измерялась также температура в 12 точках ИСЗ. Для улучшения радиолокационной заметности на ЦБ установили раскрывающиеся уголковые отражатели.
Макет герметичной кабины животного, которая устанавливалась на Втором ИСЗ (Фото И.Маринина).
19 октября ракета 8К71ПС №М1-2ПС была отправлена на полигон. Сюда же по частям доставили ферму, кабину животного и гермокорпус аналога ПС. Пробную сборку второго ИСЗ[24] на макете РН сделали еще на заводе, там же провели нужные доработки по ферме, что позволило на полигоне собрать конструкцию «как в аптеке».
С 22 октября началась подготовка к запуску.
К полету готовили трех собачек: «первая летная» — Лайка, «вторая летная» — Альбина (до этого уже дважды успешно поднималась на исследовательских ракетах), «технологическая» — Муха.
Перед самым вывозом ракеты со спутником на старт ответственные представители промышленности с ужасом обнаружили, что электрочасы, которые должны были по ходу орбитального полета периодически отключать бортовые приборы, отключали от источников тока и себя, после чего, разумеется, «умирало все и сразу». Вывоз РН задержали, схему перепаяли и перепроверили.
Программа активных научных исследований, связанных с проведением измерений на орбите, была рассчитана на семь суток. После прекращения работы радиопередатчиков и радиотелеметрической аппаратуры наблюдение за ИСЗ (с целью изучения верхних слоев атмосферы по изменению его орбиты) планировалось с помощью оптических и радиолокационных средств.
Модульная конструкция Второго спутника: приборный блок (СП-65) — блок передатчиков (аналог Первого ИСЗ) — кабина Лайки — блок телеметрической аппаратуры (единый для РН и ИСЗ) — последняя (неотделяемая) ступень ракеты-носителя. В корпусе РН дополнительно размещались два прибора для регистрации космических лучей, программно-временное устройство и источники электропитания (Фото И.Афанасьева).
3 ноября 1957 г. в 5 час 30 мин 42 сек по московскому времени состоялся старт. Команда на выключение ДУ центрального блока «А» была подана от датчика по израсходованию окислителя. Скорость в этот момент — 7945,3 м/с (расчетное значение 7974… 8124 м/с), высота 223,7 км, угол вектора скорости с местным горизонтом 0°12′. Орбита выведения имела следующие параметры:
— наклонение — 65,3°;
— высота перигея — 225 км;
— высота апогея — 1671 км;
— период обращения — 103,75 мин.
Расчетные значения высоты орбиты были 223х945…1555 км.
Спутник просуществовал в космосе 162 дня и вошел в плотные слои атмосферы 14 апреля 1958 г., сделав 2370 оборотов вокруг Земли. Телеметрическая информация, как и планировалось, принималась в течение недели. Масса этого первого в мире биологического спутника — 508,3 кг, вместе с блоком «А» — 7,79 т.
Были получены данные по космическим излучениям, поведению животного[25], параметрам функционирования ГКЖ. Лайка жила в космосе 5–6 часов, затем погибла от перегрева, так как кабина, заимствованная с ракеты для вертикального зондирования, не была рассчитана на длительное пребывание животного в орбитальном полете.
Телеметрия с борта Второго ИСЗ поставила ученых в тупик.
Прибор СП-65 имел три входных устройства, расположенных под углом 120° друг относительно друга. По соображениям экономии телеметрических каналов их выходы объединили: предполагалось, что, когда солнечное излучение попадало в одно из входных устройств (напомним — КА был неориентированным), выходные сигналы двух других были близки к нулю и не влияли на показания первого. Ожидаемый сигнал в виде характерных «ступенек» обуславливался скачкообразной сменой фильтров (тонкие металлические и органические пленки) перед приемником излучения.
Прибор включался автоматически на короткие промежутки времени при прохождении спутника в зоне приема советских телеметрических станций; всего было получено девять фрагментов телеметрии, каждый длительностью 2–3 мин, на шести витках в первые сутки и на третьем витке вторых суток (напомним, общее время активного существования ИСЗ — 7 суток).
Как правило, полученные сигналы не имели «ступенек», а свидетельствовали о плавном нарастании и спаде регистрируемого излучения. Изредка шел ступенчатый сигнал, качественно соответствующий ожидаемому. Большей частью регистрировался некоторый фон. Регулярное прохождение контрольного сигнала — импульса высокого напряжения по тракту регистрации — свидетельствовало об исправности аппаратуры.
Неполный телеметрический охват и неудачная идея «солнечнозрячего» прибора с априорным «обнулением» теневых каналов не позволили тогда отечественным специалистам интерпретировать эти нарастания и спады излучения. Отметим, что американским ученым под руководством Джеймса Ван Аллена (James Van Allen) по результатам измерений гораздо более простого «ненаправленного» прибора — счетчика Гейгера-Мюллера на КА Explorer 1 — удалось однозначно связать плавную цикличность с периодическим прохождением спутника через зоны пространственно «изотропной» радиации — радиационные пояса Земли.
Прибор СП-65 Второго советского ИСЗ: более сложный, чем счетчик Гейгера-Мюллера на первом американском КА Explorer 1, он уступил конкуренту честь открытия радиационного пояса Земли (Фото В.Куприянова).
Что же получило человечество в результате запусков Первого и Второго в мире ИСЗ?
…В итоге наблюдений, проводившихся за движением обоих спутников, и регистрации данных измерений, получены… уникальные материалы… …Блестяще подтвердились все основные исходные положения, которые были использованы при создании… спутников. …Полученные… результаты траекторных измерений позволят установить… процесс эволюции параметров орбит спутников и получить новые данные о фактическом изменении плотности в верхних областях атмосферы. Интересные данные получены по тепловым режимам на спутниках в процессе их обращения вокруг земного шара… …Можно вспомнить о тех опасениях, которые высказывались по поводу вероятности встречи спутников с метеоритами или с космическими частицами, способными… пробить или даже разрушить спутник. За время работы радиостанций советских спутников… никаких повреждений зарегистрировано не было. …Ценные материалы получены в результате… систематических радионаблюдений за ИСЗ. Полученные данные позволяют практически оценить распространение радиоволн в ионосфере, включая области, находящиеся выше максимума ионизации основного ионосферного слоя… …Большую ценность имеет полученный при полете второго спутника материал по изучению космических лучей,… огромный интерес… — изучение биологических явлений при полете живого организма в космическом пространстве. …Надежный мост с Земли в космос уже перекинут запуском советских искусственных спутников, и дорога к звездам открыта!И еще. Цитата из «Таймс»: «Честь и хвала русским. Они, подобно мореплавателям — первооткрывателям новых земель XV века, разбудили воображение. Вслед за полетом в космос неотвратимо грядет изучение новых миров…».
Когда 15 мая 1958 г. в СССР был запущен многоцелевой Третий спутник (объект Д) — прообраз современных автоматических научных станций — лидер страны Н.С.Хрущев не упустил случая «запихнуть американцам ежа в штаны». Он заявил, что США придется запустить «много спутников размером с апельсин, чтобы догнать Советский Союз».
Новый космический успех — и рекорд! — был, действительно, впечатляющим. Масса ИСЗ составила 1327 кг, в т. ч. научной и измерительной аппаратуры вместе с источниками электропитания 968 кг[26]. Спутник был выполнен как ггермоконтейнер конической формы длиной 3,57 м, с диаметром основания 1,73 м (без учета выступающих антенн). Ряд средств массовой информации окрестил этот ИСЗ «летающим автомобилем».
Разработка эскизного проекта объекта Д и РН 8А91 для его запуска в ОКБ-1 была завершена 24 июля 1956 г.
Плотное размещение большого количества чувствительной аппаратуры потребовало тщательной проработки компоновки ИСЗ с целью исключения взаимного влияния отдельных приборов.
Внутри гермокорпуса на т. н. задней приборной раме, выполненной из магниевого сплава, были расположены: радиотелеметрическая («Трал») и радионавигационная («Факел-Д» и «Факел-М» для контроля орбиты) системы, программно-временное устройство, блоки командной радиолинии (МРВ-2М) и системы обеспечения теплового режима, электрохимические источники тока. Здесь же была установлена научная аппаратура для измерения интенсивности первичного космического излучения и регистрации ядер тяжелых элементов в космических лучах, а также для регистрации ударов микрометеоров (на «заре космической эры» этого весьма опасались).
На передней приборной раме были размещены: аппаратура для измерения давления, ионного состава атмосферы, концентрации положительных ионов, величины электрического заряда, напряженности электростатического и магнитного полей, интенсивности корпускулярного излучения Солнца. Здесь же был установлен один из радиопередатчиков («Маяк»). Всего спутник нес на борту 12 научных приборов.
Приборный блок Третьего ИСЗ: объем и масса впечатляют… (Фото И.Маринина).
Помимо химических источников электропитания, спутник оснащался секциями полупроводниковых солнечных батарей (СБ) — четыре малые секции на переднем днище, четыре секции на боковой поверхности и одна — на заднем днище (что обеспечивало всенаправленность диаграммы приема излучения). Регулирование теплового режима ИСЗ осуществлялось путем изменения принудительной циркуляции теплоносителя (газообразный азот), а также изменением коэффициента собственного излучения ИСЗ. С этой целью на боковой поверхности спутника были установлены 16 секций автоматически управляемых жалюзи.
Научная аппаратура Третьего спутника: 1 — магнитометр; 2 — фотоумножители для регистрации корпускулярного излучения Солнца; 3 — солнечные батареи; 4 — прибор для регистрации фотонов в космических лучах; 5 — магнитный и ионизационный манометры; 6 — ионные ловушки; 7 — электростатические флюксметры; 8 — масс-спектрометр; 9 — прибор для регистрации тяжелых ядер в космических лучах; 10 — прибор для измерения интенсивности первичного космического излучения; 11 — датчики для регистрации микрометеоров.
Третий ИСЗ был оснащен совершенной для своего времени измерительной и радиотелеметрической аппаратурой (система «Трал» работала с запоминающим устройством), при этом результаты измерений запоминались и с большой скоростью сбрасывались на приемные пункты при пролете спутника над территорией СССР.
Носитель 8А91 для запуска Третьего ИСЗ стал, фактически, первой отечественной «чисто космической» ракетой. Первые два спутника были выведены на орбиту модернизированными опытными МБР Р-7; новая же ракета изначально разрабатывалась специально для объекта Д и последующих ИСЗ. По сравнению с базовой Р-7 она была облегчена и оснащена модифицированными ЖРД с увеличенным удельным импульсом (стартовая масса 8А91 — 268,6 т).
МБР Р-7, модернизированная для запуска спутника ПС.
В октябре 1957 г. — марте 1958 г. в Подлипках были изготовлены четыре «пакета» 8А91: два отправлены на наземные стендовые испытания, а два (№Б1-1 и Б1-2) — на полигон Тюратам.
Подготовка спутника на технической позиции космодрома проходила в апреле 1958 г. При этом особое внимание уделялось проверке впервые примененных солнечных батарей.
Первый пуск носителя 8А91 (№Б1-2) с объектом Д-1 был произведен 27 апреля 1958 г., но ИСЗ на орбиту не вышел из-за гибели РН (на участке работы первой ступени, в Т+88 с, возникли резонансные колебания боковых блоков, которые привели к разрушению ракеты на 96 сек полета). Вот что вспоминает об этом участник событий О.Г.Ивановский: «Это была наша первая [космическая] авария. Ракета упала на полигоне, километрах в 100 от старта. Спутник оторвался и упал отдельно. Поэтому, видимо, и уцелел. ИСЗ нашли (он слегка сплющился), привезли в монтажно-испытательный корпус. При вскрытии, когда отстыковали заднее днище, спутник начал гореть: произошло короткое замыкание обгоревших проводов. И мы «впороли» ему внутрь три или четыре огнетушителя, чтобы сбить огонь…».
15 мая 1958 г. состоялся успешный пуск РН 8А91 (№ Б1-1) — Третий советский ИСЗ вышел на близкую к расчетной орбиту с параметрами:
— наклонение — 65,2°;
— высота перигея — 226 км;
— высота апогея — 1881 км;
— период обращения — 105,95 мин.
Спутник активно функционировал до 3 июня 1958 г.[27], а баллистическое существование прекратил 6 апреля 1960 г., совершив 10037 оборотов вокруг Земли. С его многочисленных приборов была получена обильная телеметрия, а впоследствии — богатая научная «жатва».
Первые советские спутники вошли в историю космонавтики как отправная веха, НАЧАЛО. Их создание, запуск и орбитальный полет позволили получить уникальный научно-инженерный опыт, необходимый для перехода к следующим, уже планомерным этапам освоения космического пространства[28].
Однако главное на тот период — в корне изменилась политическая и военно-стратегическая ситуация на мировой арене. Вряд ли кто из лидеров крупнейших государств до 4 октября 1957 г. мог предположить, что придется иметь дело с тематикой, более подходящей для научно-фантастических изданий. Эра спутников кардинально меняла приоритеты и масштаб человеческой цивилизации.
«Вся суть — в переселении с Земли и в заселении Космоса» (К.Циолковский). Неужели подобные пророчества — ИСТИНА?
P.S.: Развивая идеи К.Э.Циолковского, крупный американский ученый-космист Краффт Эрике (Krafft A.Ehricke)[29] отмечает: «…Природа, как известно, хитра, но не злонамеренна: не существует каких-либо непреложных законов, препятствующих дальнейшему расширению среды обитания человечества. Совсем наоборот: существует нечто, что может быть названо «внеземным императивом». То есть существует настоятельное требование к выходу земной жизни с поверхности Земли в истинно трехмерное пространство — космическое, ибо внутрипланетных ресурсов недостаточно, чтобы обеспечить безграничное развитие жизни».
…Приятно сознавать: и в концептуальных идеях, и в инженерных решениях, и в технической реализации того, что сейчас называют космонавтикой, Россия во многом опережает Запад — своего извечного ментора и мирового лидера всевозможных инноваций. Первый спутник — ярчайший тому пример.
«Гуд бай, Америка…».
Запуск Советским Союзом 4 октября 1957 г. ПЕРВОГО искусственного спутника Земли явился ужасным ударом по самомнению Соединенных Штатов, уверовавших — особенно после успешной разработки ядерного и термоядерного оружия — в свое безусловное техническое лидерство.
Как могло такое произойти? Почему «прошляпили» разведка, инженеры, ученые, в конце концов, политики и журналисты, которые так любят стращать обывателя «коммунистической угрозой»? Где «звездно-полосатые» ракеты и спутники — и есть ли они вообще?..
…Серьезное внимание на ракеты американцы обратили только в период Второй мировой[30]. За год до того, как фашистские V-2 («Фау-2») обрушились на Лондон, группа ученых, состоящих на службе ВМС США, во главе с коммандером Харви Холлом (Harvey Hall), провела исследование возможности создания нацистской Германией искусственных спутников Земли с т. н. «лучами смерти». Вывод группы был однозначен: несмотря на колоссальный прогресс, достигнутый ракетной техникой, ее уровень (на тот период) не в состоянии обеспечить запуск сколько-нибудь сложного искусственного тела на околоземную орбиту.
В Соединенных Штатах не нашлось «американского Тихонравова», но зато в ходе операции «Скрепка» (Paperclip, охота за «мозгами» в побежденной Германии) был «импортирован» главный ракетчик III Рейха Вернер фон Браун и еще около 120 крупнейших специалистов. Армия США пристроила недавних врагов в Редстоунский арсенал (г. Хантсвилл, шт. Алабама) — помогать осваивать трофейные V-2[31] и разрабатывать новые боевые ракеты.
В это же время научно-исследовательские подразделения вооруженных сил США начинают «интересоваться космосом».
3 октября 1945 г. в Главном авиационно-техническом управлении ВМС BuAer (Bureau of Aeronautics) под началом все того же Холла был организован Комитет оценки реализуемости космических ракет, который предпринял интенсивное изучение данной проблемы на уровне формирования технических требований и исследования необходимых ресурсов. Комитет рекомендовал BuAer поддержать экспериментальную программу разработки беспилотного «космического корабля для полета вокруг Земли» массой 2000 фунтов (907 кг) на базе одноступенчатой ракеты (компоненты топлива — жидкий кислород и жидкий водород), оценив потребные расходы всего в 5–8 млн $. В декабре BuAer заказало Гуггенхеймской авиационной лаборатории Калифорнийского технологического института, а затем еще трем авиационным компаниям исследование проблемы спутника, чтобы определить свое отношение к этой концепции.
Двенадцать главных немецких ракетчиков, сменивших Центр Пенемюнде III Рейха на Редстоунский арсенал в США. Слева направо: Эрнст Штулингер (Ernst Stuhlinger), директор управления научно-исследовательских работ; Хельмут Хользер (Helmut Hoelzer), директор вычислительного центра; Карл Хэймбург (Karl L. Heimburg), директор испытательной лаборатории; Эрнст Гесслер (Ernst Geissler), директор аэробаллистической лаборатории; Эрих Нойберт (Erich W. Neubert), директор лаборатории надежности и системного анализа; Вальтер Хоссермарн (Walter Haeussermarn), директор лаборатории наведения и управления; Вернер фон Браун (Wernher von Braun), главный конструктор, директор отделения разработок; Вилльям Мразек (William A. Mrazek), директор лаборатории конструкции и механики; Ханс Хойтер (Hans Hueter), директор лаборатории наземных систем; Эберхарт Реес (Eberhard Rees), заместитель директора отделения разработок; Курт Дебус (Kurt Debus), директор лаборатории пуска ракет; Ханс Маус (Hans H. Maus), директор лаборатории производства и сборки (Фото NASA).
Почти одновременно, 12 ноября 1945 г., командующий ВВС Армии США генерал Генри Арнольд (Henry Н. Arnold) доложил министру обороны, что в ближайшее время могут быть созданы ракеты дальнего действия и «космические корабли, способные работать за пределами атмосферы». Узнав об инициативе BuAer, ВВС поручили специальному подразделению «Проект RAND» в составе корпорации Douglas Aircraft (с 1948 г. — самостоятельная RAND Corporation) дать срочную оценку идеи спутника.
Четырехступенчатый кислородно-спиртовой и двухступенчатый кислородно-водородный «корабли», предложенные RAND и BuAer в 1946 г.
2 мая 1946 г. специалисты RAND выпустили «Предварительный проект экспериментального обращающегося вокруг Земли космического корабля». Выводы были таковы: запуск спутника массой 500 фунтов (227 кг) с использованием многоступенчатой ракеты технически возможен и может быть выполнен приблизительно через пять лет, затраты оценивались в 150 млн $. Авторы исследования отметили (правильно!), что спутник с соответствующими приборами будет «одним из наиболее мощных научных инструментов XX века». Кроме того, запуск спутника «зажег бы воображение человечества и, вероятно, произвел бы последствия… сравнимые со взрывом атомной бомбы… Чтобы представить себе воздействие на мир, достаточно вообразить испуг и восхищение, которое испытали бы все, если бы не Соединенные Штаты, а другая страна первой успешно запустила спутник»…
Было отмечено также, что ИСЗ имеют потенциальную военную ценность: например, они могут наблюдать погоду над вражеской территорией, оценивать ущерб, нанесенный бомбардировками, служить ретрансляторами для связи.
Однако официальный Пентагон эта идея не увлекла. Теодор фон Карман (Theodor von Karman), один из столпов мировой аэродинамики, который возглавлял Научную консультативную группу ВВС и одновременно являлся директором Гуггенхеймской лаборатории, активно поддерживал исследования верхних слоев атмосферы, но «был глух и нем» по вопросу об искусственном спутнике. Председатель Объединенной комиссии по НИОКР вооруженных сил и влиятельный ученый Ванневар Буш (Vannevar Bush) также был настроен скептически. Он публично заявил о невозможности получения в пределах обозримого будущего инженерного опыта, достаточного для создания межконтинентальных ракет, РН и ИСЗ. Подобная позиция маститых ученых неизбежно становилась «холодным душем» для «космических» предложений, что, в известной степени, объясняет равнодушие к ним в высоких политических и военных инстанциях.
13 июня 1946 г. с полигона Уайт-Сэндз (шт. Нью-Мексико) стартовала первая «геофизическая» «Фау-2» с приборами, созданными в новом «ракетном» отделе Научно-исследовательской лаборатории ВМС (NRL, Naval Research Laboratory). Чуть раньше, в январе-феврале 1946 г., специалисты NRL исследовали целесообразность разработки автоматического ИСЗ, однако пришли к выводу, что технические средства запуска на орбиту еще слишком примитивны; в этой связи больший практический интерес представляет создание приборов для установки на геофизические V-2.
В марте 1946 г. (вскоре после того, как специалисты NRL решили, что спутник — это слишком амбициозный и труднореализуемый проект) представители BuAer и армейской авиации США (Army Air Force) пришли к заключению, что «общие преимущества программы разработки спутника достаточны, чтобы одобрить в основном эту программу».
Это было время послевоенного сокращения оборонного бюджета и структурной реорганизации вооруженных сил США под реалии «атомного века». В сентябре 1947 г. Военно-воздушные силы отделились от Армии и стали отдельным видом вооруженных сил — а процесс размежевания сделался «основной работой» руководителей ВВС.
Лишь в 1948 г. дело дошло до нового рассмотрения предложений о создании спутников. 29 марта Группа технических оценок (Technical Evaluation Group) из гражданских ученых, консультировавшая Комитет по управляемым снарядам (Guided Missiles Committee) Комиссии по НИОКР министерства обороны, определила, что техническая возможность создания ИСЗ существует, но «ни ВМС, ни ВВС пока не определили военную или научную пользу [запуска ИСЗ], соразмерную с ожидаемыми затратами». Более того: когда в ежегодном отчете министра обороны Джеймса Форрестола (James Forrestol) появился краткий параграф о том, что каждый из трех видов вооруженных сил ведет изучение проектов по «Программе спутника Земли» (Earth Satellite Vehicle Program), это вызвало общественный протест по поводу такой «безответственной» траты денег налогоплательщиков. Один американец был оскорблен настолько, что в своем письме объявил программу ИСЗ как «безобразный вызов человечества воле Господа»!
…Тем временем ВМС вели на полигоне Уайт-Сэндз исследования верхних слоев атмосферы с применением ракет Aerobee («Воздушная пчела»), а под эгидой Армии была создана система Bumper, где небольшая ракета WAC–Corporal монтировалась в качестве второй ступени на «Фау-2» (восемь пусков, включая рекордный полет 24 февраля 1949 г. на высоту 402 км).
В 1946 г. в NRL стартовала разработка собственной высотной ракеты Neptune («Нептун»), которую позднее переименовали в Viking («Викинг»). Проектом руководил Милтон Розен (Milton W. Rosen), а изготавливала ракету компания Glenn L. Martin. Ее конструкция включала несколько важных новшеств: карданно подвешенный для управления двигатель, несущие баки, газоструйные органы управления ориентацией относительно продольной оси, работающие на отработанном газе ТНА и др. Испытания зондирующей ракеты Viking начались в 1949 г.
Американский ракетный рекорд 1949 г.: двухступенчатый Bumper (комбинация А-4 и WAC–Corporal) достиг высоты 402 км (Фото NASA).
С эскалацией корейской войны (1950–1953 гг.) темп исследований и разработок ракетной техники в США ускорился.
В частности, ВМС работали над телеуправляемыми изделиями, запускаемыми с кораблей. Армией команде Вернера фон Брауна было поручено создание баллистической ракеты средней дальности. А «светлые головы» из RAND под эгидой ВВС продолжали исследования ошеломляющей перспективной концепции — спутника-разведчика. Действительно, аэрофотосъемка с высотных самолетов и воздушных шаров была уже хорошо освоена — как и противодействие этим системам. «Неуязвимый» спутник-разведчик, с точки зрения реалий «холодной войны», представлялся панацеей…
В феврале 1952 г. физик Аристид Гроссе (Aristid V. Grosse) из Университета Темпла, одна из ключевых фигур Манхэттенского ядерного проекта на его ранней стадии, добился поручения президента Гарри Трумэна (Harry S. Truman) исследовать «проблему спутника». Зная, что Вернер фон Браун «неравнодушен к космосу», Гроссе обсудил возможные перспективы ИСЗ с ним и его сотрудниками в Редстоуне. Пятнадцать месяцев спустя помощнику министра обороны по НИОКР Дональду Куорлзу (Donald A. Quarles) был представлен проект «Американской звезды» (American Star) — инертного ИСЗ в виде надувного шара, доступного оптическим наблюдениям. Новый президент Дуайт Эйзенхауэр (Dwight D. Eisenhower) также был ознакомлен с материалами по спутнику, но — увы! — энергия Гроссе «ушла в свисток»…
А вот три номера журнала «Collier's Magazine», вышедшие в период 1952–1954 гг. четырехмиллионным тиражом, привлекли внимание широкой публики. Статьи фон Брауна и его единомышленников рисовали захватывающие перспективы, достижимые в ближайшие 25 лет, — если Америка будет строить космические ракеты и орбитальную станцию в виде колеса (массой 27 тыс т!), с которой межпланетные корабли могли бы стартовать к Луне и Марсу.
В. фон Браун вместе с У.Диснеем («сначала было… кино») (Фото NASA).
Одновременно получила развитие альтернативная концепция — менее амбициозная, но гораздо более реалистическая. Еще в сентябре 1951 г. британские исследователи Кеннет Гэтланд (Kenneth W. Gatland), Энтони Кунеш (Anthony M. Kunesh) и Алан Диксон (Alan E. Dixon) на 2-м Международном астронавтическом конгрессе в Лондоне представили расчет вариантов многоступенчатых РН «минимальной массы» для запуска ИСЗ (Minimum Satellite Vehicle). Опираясь на эту работу, профессор Мэрилендского университета Фред Сингер (S. Fred Singer) в августе 1953 г. на 4-м конгрессе в Штутгарте выступил с, пожалуй, первой инженерно удачной концепцией реального ИСЗ, который мог быть создан на базе существовавшей в тот период технологии. Проект назывался «Минимальный орбитальный беспилотный спутник Земли» (Minimum Orbital Unmanned Satellite of the Earth, MOUSE — «мышь») и представлял собой аппарат массой 100 фунтов (45,4 кг) с приборами для регистрации параметров солнечного излучения и космической радиации.
В 1952 г. Международный совет научных союзов принял решение о проведении в 1957–1958 гг. Международного геофизического года. 4 октября 1954 г. Специальный комитет по МГГ с подачи американских ученых принял резолюцию, рекомендующую странам-участницам обдумать возможность создания и запуска научных ИСЗ.
25 июня 1954 г. в Вашингтоне по инициативе ведущих сотрудников Управления военно-морских исследований ONR (Office of Naval Research) коммандера Джорджа Гувера (George W. Hoover) и Александра Сатина (Alexander Satin) состоялась встреча «специалистов по космосу». Председательствовал президент Международной астронавтической федерации Фредерик Дюрант (Frederick С. Durant, III), участвовали фон Браун, известный астроном Фред Уиппл (Fred L. Whipple) и др. Фон Браун предложил применить новую армейскую ракету Redstone как первую ступень перспективной РН спутника. Идея нашла поддержку, и после второго совещания в Редстоунском арсенале команда фон Брауна 15 сентября 1954 г. выпустила предложение по «Носителю минимального спутника, основанному на имеющихся компонентах…».
Следует отметить, что спутник, действительно, был «абсолютно минимален»: белая или полированная сфера диаметром 508 мм (20 дюймов) и массой всего 2,3 кг (5 фунтов) без какого-либо полезного груза[32]. Несколькими месяцами позже данное предложение получило наименование Project Orbiter. Планировалось, что первый запуск может состояться летом 1956 г.
Но группа «Армия — ONR» была не единственной в США, кто разрабатывал космические РН и ИСЗ. Лаборатория NRL (ВМС) под эгидой национального комитета по проведению МГГ предложила свой проект, известный позже как «Авангард» (Vanguard). О нем речь пойдет особо (в главе «Промахи и удачи «Авангарда»). Не очень выделяясь в части технических характеристик РН и спутника, этот проект позиционировался как «гражданский» — что более всего устраивало Белый дом по политическим соображениям. Научный спутник должен был установить прецедент «свободы космоса» (Freedom of Space) — право пролета над территорией любого государства — и таким образом проторить дорогу для военных ИСЗ разведки[33].
Гипотетическая РН — как ее представляли в начале 1950-х… (Рисунок BIS).
…и гипотетический надувной ИСЗ в момент выхода на орбиту (обратите внимание на эволюцию общего вида РН буквально за несколько лет) (Рисунок BIS).
Первая в мире инженерная концепция «минимального спутника» MOUSE: варианты «сферический» и «цилиндрический».
К марту 1954 г. RAND завершила исследовательскую работу по спутнику для разведки, картографирования и метеонаблюдения в интересах ВВС и выпустила отчет по проекту Feed Back («Обратная связь»). Решение о создании этой системы было принято через год — 16 марта 1955 г.
На заседании Совета национальной безопасности 26 мая 1955 г. решением № 1408 американская программа запуска научного спутника была одобрена при том условии, что она не будет мешать созданию ракет средней и межконтинентальной дальности. В секретном документе рекомендовалось, чтобы США «…запустили малый научный спутник под международным покровительством типа МГГ с целью подчеркнуть его мирное назначение…».
Президент Д.Эйзенхауэр одобрил эту политику, и 29 июля его пресс-секретарь официально объявил, что американский спутник будет запущен в период МГГ.
Следующий вопрос: какой команде отдать предпочтение? Д.Куорлз образовал «Особую группу по специальным средствам» (Ad Hoc Group of Special Capabilities), чтобы оценить конкурирующие проекты[34]. Группа под председательством Гомера Стюарта (Homer Stewart) из Лаборатории реактивного движения JPL включала восемь представителей, в т. ч. от Армии, ВМС и ВВС США.
Она приняла решение 3 августа: пятью голосами против двух (один член группы был болен) проголосовали за проект ВМС. Сам Стюарт стоял за Orbiter, и его особое мнение позволило вынести вопрос на повторное голосование. Обе стороны представили дополнительные материалы в защиту своих проектов, но решение осталось таким же: победил проект NRL.
Теперь, задним числом, это решение считают в США фатальным — ведь если предпочтение было бы отдано Армии с ее проектом Orbiter, самый первый в мире ИСЗ, возможно, был бы американским!
Однако, с другой стороны, бывший «наци», чьи ракеты громили Лондон и готовились обстреливать США, «чистокровный ариец» Вернер фон Браун — и вдруг «отец американского космоса»? Нонсенс!.. Интересно, что сам Г.Стюарт в 1960 г. признал, что, помимо прочих факторов, среди членов его группы «наблюдались некоторые антигерманские настроения». Действительно, нельзя не признать: конструкция «Редстоуна» имела «кровное родство» с V-2, и, конечно, многие из создавших эту ракету инженеров делали «оружие возмездия» III Рейха.
…Проект NRL был официально утвержден 9 сентября 1955 г. Его основой стал специально разрабатываемый трехступенчатый носитель (модифицированная жидкостная ракета Viking — первая ступень, модифицированная жидкостная ракета Aerobee-Hi — вторая ступень и новая твердотопливная третья ступень), который должен был вывести ИСЗ массой 9,8 кг на орбиту с перигеем 488 км. Первую ракету полного состава со спутником предполагалось запустить в мае 1957 г.
«Новый инструмент глобальной политики» — президент Д.Эйзенхауэр (слева) инспектирует стартовые ракетные комплексы на авиабазе Патрик (мыс Канаверал) (Фото NASA).
5 июля 1957 г. глава американской разведки Аллен Даллес (Allen Dulles) сообщил Куорлзу, ставшему первым заместителем министра обороны, что Советский Союз «вероятно, способен запустить спутник в 1957 г.» Несмотря на это предупреждение, никаких заметных усилий по ускорению программы Vanguard предпринято не было.
У администрации Д.Эйзенхауэра на исходе лета 1957 г. имелись, как тогда казалось, более серьезные проблемы, чем гипотетический запуск русского спутника. Экономический бум, охвативший США в 1954 г., сменился спадом. Это, в свою очередь, привело к сокращению расходов на оборону и науку. Но самый большой неприятностью стали волнения, начавшиеся в сентябре в г. Литтл-Рок, шт. Арканзас: вопреки закону губернатор штата не допустил чернокожих детей в школу, переубедить его не удалось, и президент Эйзенхауэр ввел в город войска.
В довершение картины следует отметить, что министр обороны США Чарлз Уилсон (Charles E. Wilson), будучи «рачительным хозяином» оборонного бюджета, и не скрывал своей явной враждебности к ИСЗ.
… 4 октября 1957 г. в 20 ч 07 мин по вашингтонскому времени станцией радиоперехвата в Риверхеде (Нью-Йорк) были зафиксированы первые искусственные радиосигналы из космоса. Еще через два часа корреспондент NBC привез запись в студию и с дрожью в голосе провозгласил: «А теперь слушайте сигнал, который навсегда отделил старое время от нового…». Через несколько секунд радиослушатели — кто с восхищением, а кто с ужасом — внимали четким коротким звукам «…бип… бип… бип…» Новость полетела по миру как «сенсация номер один отныне и навеки».
Шел одиннадцатый год «холодной войны», и Первый спутник стал своеобразным продуктом этого противостояния. СССР осуществил очевидный прорыв в ракетостроении, и Соединенные Штаты с ужасом обнаружили, что противопоставить ему что-либо в политическом и военном отношении нечего.
9 октября 1957 г. Д.Эйзенхауэр провел пресс-конференцию. «Запуск советского спутника никак не повлияет на развитие наших [космических] программ… — заявил президент. — Он не вызывает у меня озабоченности — ни на йоту…».
Президент США пытался сделать хорошую мину при плохой игре. Настроение же Запада в целом эмоционально отразила 14 декабря 1957 г. Saturday Evening Post: «Несомненно, что вскоре стратегические ракеты сделают ненужными тяжелые бомбардировщики так же, как огнестрельное оружие сделало ненужным рыцарские доспехи и мечи».
Операция «Фарсайд»: выстрел со стратостата.
Концепция «Рокун» (Rockoon, Rocket on Balloon — ракета на воздушном шаре) была предложена М.Льюисом (M.L.Lewis), С.Сингером (S.Singer) и Дж. Халворсоном (G.Halvorson) в марте 1949 г., в процессе проведения экспериментальных пусков ракет Aerobee с корабля ВМС США Norton Sound. Основная идея состояла в том, чтобы поднять зондирующую ракету в верхние слои атмосферы на высотном воздушном шаре (стратостате). При достижении максимальной высоты ракета запускалась автоматически или по радиосигналу, прорываясь вверх прямо сквозь оболочку шара.
Группа ученых из Университета штата Айова под руководством Джеймса Ван Алена исследовала природные явления, связанные с распространением космической радиации, в районах магнитных полюсов Земли.
В частности, в августе-сентябре 1952 г. было запущено несколько ракет с корабля береговой охраны США Cutter East Wind. «Рокун», неподвластный качке и способный доставить 11 кг (25 фунтов) приборов на высоту более 80 км (50 миль) при взлете с легкого судна, представлялся относительно простым и многообещающим вариантом достижения рекордных высот ракетами небольшой размерности.
Вскоре данная концепция получила «космическое» развитие. Майк Фостер (Mike Foster), Курт Стелинг (Kurt Stehling) и Раймонд Миссерт (Rimond Missert) на Международном конгрессе по астронавтике в Риме в 1956 г. предложили применить для исследования околоземного пространства трехступенчатую твердотопливную ракету, осуществив ее запуск на высоте 21 км с гигантского аэростата «Скайхук» (Skyhook) емкостью 112 тыс м3.
Чуть позже те же специалисты предложили «Высотный запуск малого орбитального носителя» (High-Altitude Launching of Small Orbit Vehicle) с аэростата объемом 85 тыс м3 на высоте 24–32 км. Первая ступень — связка четырех ракетных двигателей твердого топлива (РДТТ) тягой 27,2 тс и массой 5440 кг — работала 7–8 сек, создавая начальное ускорение 9 единиц. Вторая ступень — жидкостная, массой 567 кг; тяга ЖРД — 1,8 тс в течение 80 сек. РДТТ третьей ступени развивал тягу 0,9 тс в течение 20 сек. По проекту, РН могла вывести спутник массой 22,7 кг на орбиту с перигеем 320 км.
Отметим: вышеуказанная троица тогда же довольно плотно работала по проекту Vanguard: М.Фостер и К.Стелинг представляли научно-исследовательскую лабораторию ВМС NRL (последний был главным двигателистом РН), а Р.Миссерт — Университет Айовы, где уже разрабатывались научные программы и приборы для первых ИСЗ.
В проекте «Фарсайд» старт космической ракеты осуществлялся сквозь оболочку высотного аэростата (Фото из журнала Missiles and Rocket).
Концепция «Рокун» эволюционировала в проект «Фарсайд» (Farside — обратная сторона Луны). Заказчиком выступил Научно-исследовательский отдел ВВС США (Air Force Office of Scientific Researche), исполнителем работ — фирма Аегоnиtгоniс Systems, Inc., разработчиком научных приборов — Университет шт. Мэриленд.
На первом этапе предполагалось поднять ПГ на высоту порядка одного радиуса Земли (~6370 км). Для этого «носовой конус» должен был достичь скорости более первой космической[35]. ПГ имел массу 1,4–3,6 кг (3–8 фунтов) и содержал набор датчиков, замкнутых на телеметрический передатчик.
Ракета «Фарсайд-1» представляла собой четырехступенчатую комбинацию из десяти РДТТ, которая поднималась для запуска аэростатом «Скайхук» объемом 106 тыс. м3[36] на высоту свыше 30 км.
Носитель собирался из имеющихся в распоряжении и опробованных в полете РДТТ. Первая ступень — четыре двигателя Recruit фирмы Thiokol, вторая ступень — один Recruit, третья ступень — четыре РДТТ типа ASP фирмы Grand Central Rocket (доработка ракеты Loki), четвертая ступень — один ASP. Связка длиной 7,3 м и максимальным поперечником 0,46 м крепилась в легком трубчатом станке простой конструкции, который позволял ракете стартовать вертикально — прямо сквозь оболочку аэростата. По замыслу разработчиков, короткое время работы РДТТ уменьшало гравитационные потери (по расчетам, более чем на порядок); оборотная сторона — огромные перегрузки, характерные для боевых реактивных снарядов. Первые две ступени ракеты имели аэродинамические стабилизаторы, последние две стабилизировались закруткой.
Кроме проверки способа старта с аэростата, задачами проекта «Фарсайд» являлись исследование интенсивности уменьшения магнитного поля Земли, определение наличия кольцевого электрического тока, измерение уровня интенсивности космических лучей, определение местонахождения частиц, составляющих полярные сияния, и фиксация наличия метеорной пыли в ближнем космосе.
Хроника событий такова.
В июне 1957 г. первый аэростат с макетом ракеты «Фарсайд-1», стартовав из Калифорнии, совершил высотный дрейф через все Соединенные Штаты.
25 сентября аналогичный шар взмыл уже со штатной РН с полигона испытательной базы Эниветок. Поднявшись на 20 км, он по неизвестным причинам рухнул вниз и утонул вместе с ракетой в Тихом океане.
Вторая зачетная попытка по странной иронии судьбы почти совпала с запуском Первого спутника. Но если для СССР день 4 октября 1957 г. отмечен всемирным триумфом, то американцы потерпели с «Фарсайдом» поражение: аэростат и на этот раз не достиг заданной высоты. Поднявшись на 27 км, он стал медленно, но неуклонно снижаться. На высоте 21 км был послан радиосигнал в систему зажигания ракеты. Последняя, рванувшись вверх через оболочку аэростата, сбилась с курса. Сработали только первые две ступени, достигнутая высота составила ~800 км. Приборы в «носовом конусе», очевидно, вследствие высоких перегрузок, оказались неработоспособны.
Новая попытка запуска была предпринята 7 октября. Однако из-за короткого замыкания в пусковом механизме ракеты она стартовала преждевременно на высоте 18 км. Вновь сработали лишь первые две ступени. По измерениям наземного радиолокатора, была достигнута высота 645 км. ПГ вновь оказался поврежден, и ни один радиосигнал с него на Землю не поступил.
Подготовка ракеты «Фарсайд-1» к установке в аэростат (Фото AFOSR).
Четвертый аэростат погиб 11 октября при прохождении холодных слоев атмосферы — на высоте 30 км лопнула его обледеневшая оболочка.
Пятый аэростат, запущенный 19 октября, почти достиг заданной высоты, но после включения ракеты сработали лишь три ступени. Опять пострадали приборы — наблюдатели на Земле принимали сигналы в течение всего 0,04 сек. Однако ракета достигла рекордной высоты 3220 км.
Теперь в распоряжении группы оставался шестой — и последний — аэростат.
Чтобы спасти положение, было решено установить ракету под некоторым углом к вертикали. 22 октября 1957 г., когда аэростат завис на 29,4 км, она была запущена. Измерения показали, что расчетная скорость достигнута. Но вновь отказал бортовой передатчик, а радиолокаторы сопровождения потеряли миниатюрный (диаметром 16,5 см и длиной 32 см) «носовой конус» на высоте 4350 км…
И это — все… Увы!
Неутешительные результаты первого этапа проекта заставили отказаться от запусков более крупной ракеты «Фарсайд-2» в сторону Луны.
Пресса отметила это поражение ядовитыми репликами о «чрезвычайно сомнительной технической реализуемости проекта». Действительно, запуск многоступенчатой ракеты со стратостата оказался не таким уж простым мероприятием. Полеты более мелких «Рокунов» имели успех и продолжались до первой половины 1960-х годов. А Джеймс Ван Аллен переориентировался на спутники, благодаря которым сделал открытие, обессмертившее его имя: человечество узнало о существовании вокруг Земли радиационных поясов.
Промахи и удачи «Авангарда».
В своей речи 6 ноября 1957 г., в преддверии сороковой годовщины Октябрьской революции, после запуска и триумфа Первого и Второго ИСЗ, лидер СССР Н.С.Хрущев заявил: «Кажется, название «Авангард» отражало уверенность американцев в том, что именно их спутник будет первым в мире. Но… наш советский спутник стал первым, именно он оказался в авангарде…».
А в это время в Соединенных Штатах, как снежный ком, набирала обороты кампания за скорейшую ликвидацию создавшегося положения. Как выразился сенатор и будущий президент США Линдон Джонсон (Lyndon В. Johnson), «я не верю, что это поколение американцев желает примириться с положением, когда каждую ночь приходится засыпать при свете коммунистической луны».
Напомним некоторые вехи проекта Vanguard.
Он ведет свое начало от ранних разработок ВМС США, включавших испытания боеголовок баллистических ракет при скоростном входе в атмосферу. В то время очевидной представлялась попытка «скрестить» две уже имевшиеся зондирующие ракеты: Viking и Aerobee. Довольно быстро выяснилось, что при оптимизации такой системы и добавлении к ней третьей ступени реально вывести на околоземную орбиту легкий спутник.
Работа 1954–1955 гг. привела к появлению секретного отчета «Изучение научного спутника» (A Scientific Satellite Study) — совместного документа Научно-исследовательской лаборатории ВМС NRL и фирмы Glenn L. Martin (GLM), посвященного анализу реализуемости проекта носителя. В результате «нарисовались» два варианта РН:
М10: в качестве первой ступени — усовершенствованный «Викинг» с новым двигателем; верхние ступени — твердотопливные ракеты — необходимо было разработать специально. РН должна была иметь длину 12,2 м (40 футов), диаметр 1,22 м (4 фута) и «сухую» массу 1020 кг (2250 фунтов). Она могла доставить на круговую орбиту высотой 347 км (216 миль) «носовой конус» массой 18,1 кг (40 фунтов). Разработка должна была занять примерно два года;
M15: появился из-за беспокойства относительно большого объема работ по верхним ступеням. Вариант включал жидкостную высотную ракету Aerobee— Hi[37] (вторая ступень) и новую твердотопливную третью ступень. На разработку требовалось 2,5 года; РН могла вывести на орбиту высотой 489 км (303 мили) груз массой 9 кг (20 фунтов).
Как уже упоминалось, «Особая группа по специальным средствам», называемая также комиссией Стюарта, высказалась именно за вариант M15. Комиссия молчаливо приравняла «политический заказ» лидеров США к приоритету «гражданского» ИСЗ, создаваемого без привлечения немецких спецов во главе с Вернером фон Брауном. Стоимость же программы определялась из соображений, что «публика не должна ошеломленно вздрогнуть[38]»…
Задача формирования технического облика первой американской космической РН оказалась исключительно трудна, поскольку, по замыслу разработчиков, успех должен был зависеть от «журавля в небе» — удачных инновационных подходов. Если добавить сюда неизбежные доработки «по ходу дела», амбиции и «вкусовые пристрастия» специалистов NRL и GLM — получался громадный «букет» проблем, которые необходимо было решить в ходе реализации проекта.
В частности, техническая комиссия (Technical Panel), возглавляемая Ричардом Портером (Richard W. Porter), которая отвечала за выбор научных приборов для спутников NRL, рекомендовала выводить на орбиту не «носовой конус», а сферу диаметром 30 дюймов (76 см), что позволяло корректно провести исследования плотности верхней атмосферы. Для РН с ограниченными резервами подобные идеи были «критическими».
Много времени отнимало исследование альтернатив. Казалось, команда «Авангарда» никак не может «заморозить» основные технические решения по РН. Так, острый конфликт возник из-за типа телеметрии, которую предполагалось реализовать в программе. Обнаружилось, что у ВВС США нет радиооборудования, работающего в режиме широтно-импульсной (передача) и частотной (прием) модуляции (блоки, работавшие в таком режиме и имевшие малую массу, предполагалось установить на борт ракеты). Значит, «Авангарду» требовалось собственное телеметрическое оборудование и радиолокационные станции (РЛС) сопровождения РН и ИСЗ[39].
Двигатель Х-405 первой ступени РН Vanguard в музейной экспозиции. На переднем плане слева — хвостовая часть одной из ракет Годдарда, справа — двигатель экспериментального самолета Х-1 (Фото Ч.Вика).
К марту 1956 г. была завершена «шлифовка» проекта, реструктурировано управление программой и определены научные цели миссии.
Руководителем программы стал Джон Хаген (John P. Hagen), техническим директором — Милтон Розен (Milton Rosen). Кстати, именно жена Розена — Джозефина — предложила название «Авангард» (Vanguard) для этой программы.
Первая ступень РН Vanguard состояла из удлиненной до 13,4 м зондирующей ракеты Viking второго этапа постройки с кислородно-керосиновым двигателем Х-405. Последний был создан фирмой General Electric на базе наработок по программе армейской ракеты Hermes A-3B. Двигатель Х-405 имел турбонасосную систему подачи топлива и развивал тягу 120–125 кН. Камера сгорания с регенеративным охлаждением горючим устанавливалась в кардановом подвесе для управления по каналам курса и тангажа; газогенератор ТНА работал на перекиси водорода; отработанные на турбине газы истекали через качающиеся сопла управления по каналу крена.
С первой ступенью практически сразу начались проблемы. Так, группа специалистов GLM, которая разрабатывала ракету-прототип Viking, к началу рабочего проектирования «Авангарда» была расформирована, большинство ее членов получили новые назначения, в частности, в рамках проекта Titan (ВВС). А так как разработка «Авангарда» «не должна [была] тормозить военные ракетные программы», NRL пришлось довольствоваться «малыми силами» — группой ученых, участвовавших в предварительных исследованиях по ИСЗ, и остатками группы Viking на фирме Martin.
Основные агрегаты двигателя Х-405 были готовы к стендовым испытаниям в конце 1955 г. Огневые испытания, начатые в декабре, выявили неудачную конструкцию форсуночной головки («тяжелый» или «пушечный» запуск: в момент зажигания в камере скапливалось некоторое количество непрореагировавшего топлива, которое вызывало взрывы). Головку переделали.
В результате увеличения диаметра спутника ракета Aerobee в роли второй ступени стала выглядеть «слишком тощей». Было принято решение разработать новую вторую ступень большего (81 см) диаметра на базе двигателя AJ-10-37 фирмы Aerojet General. ЖРД развивал тягу 33 кН (7500 фунтов), используя долго хранимые компоненты топлива — ингибированную белую дымящую азотную кислоту (АК) и несимметричный диметилгидразин (НДМГ), вытесняемые в камеру сгорания сжатым гелием.
Необходимо особо упомянуть, что при проектировании системы Vanguard исключительно большое внимание уделялось «дисциплине веса». Для столь малого носителя критерий «скорость»-«масса» был очень чувствительным. Вот, например, к чему приводило увеличение конечной массы каждой ступени всего на один фунт (0,454 кг). Уменьшение скорости составляло:
— для 1-й ступени 0,31 м/сек;
— для 2-й ступени 2,44 м/сек;
— для 3-й ступени 24,4 м/сек.
Что такое «Авангард» поясняет руководитель программы Джон П. Хаген: «Леди и джентльмены, все о'кей!» (Фото NRL).
На второй ступени стояло оборудование системы управления полетом и «вращающийся стол» (для закрутки третьей ступени). Довольно сложную — во всяком случае, для своего времени — СУ, работающую как на активном участке полета первой и второй ступеней, так и на пассивном участке до момента включения РДТТ третьей ступени, взялась проектировать и строить фирма Minneapolis Honeywell Regulator. Управляющие органы на первой ступени — камера сгорания основного ЖРД, качающаяся в кардановом подвесе, и два поворотных сопла управления по крену, через которые выпускался отработанный в ТНА газ. На второй ступени для тех же целей служили качающийся ЖРД и небольшие микродвигатели, через которые при работе основного двигателя выпускался сжатый пропан, а в свободном полете, после отключения основного двигателя, — сжатый гелий из системы наддува баков ступени.
Для программы Vanguard в 1956–1957 гг. фирма Aerojet изготовила 11 летных вторых ступеней.
Цилиндро-конический головной обтекатель из армированного металлическими кольцами асбеста закрывал спутник и третью ступень при прохождении через плотные слои атмосферы. Он сбрасывался, раскрываясь на две половины.
Неуправляемая третья ступень стабилизировалась закруткой перед включением своего двигателя с помощью небольших тангенциально расположенных РДТТ. Подобные же двигатели отделяли пустую вторую ступень от сборки «спутник — третья ступень».
Следует отметить, что третья ступень требовала инновационного «скачка» в технологии РДТТ. В августе 1955 г. наиболее вероятным субподрядчиком представлялась компания Thiokol Chemical: она хорошо проявила себя при разработке РДТТ различной размерности для боевых ракет. Однако уже в конце сентября 1955 г. фирма столкнулась с трудностями, связанными со спецификой задачи. Проблемные моменты:
— тонкостенный стальной корпус (всего 18 % от массы топлива);
— продолжительное время работы (более 30 сек);
— сопло с большой степенью расширения;
— высокий удельный импульс (более 235 сек);
— заряд нового гетерогенного топлива на основе перхлората калия, скрепленный со стенками камеры сгорания.
Стеклянная модель спутника Vanguard, представленная на первой презентации одноименной программы.
Thiokol брался сделать РДТТ, но для достижения заданного суммарного импульса требовал добавить в камеру еще двадцать фунтов (9 кг) топлива и увеличить диаметр двигателя. Иначе, утверждал представитель компании, «требования фирмы Martin превышают мыслимые пределы перспективных образцов ракетной техники…».
Получив такой ультиматум, GLM и NRL вынуждены были пересмотреть технические требования к РДТТ… и параллельно обратить внимание на предложения других компаний. В частности, представляло интерес предложение Grand Central Rocket (GCR) по двигателю тягой 12,5 кН с металлическим корпусом. Инновационный подход предложила Аллеганская баллистическая лаборатория ABL (Allegheny Ballistic Laboratory), которая являлась филиалом фирмы Hercules Powder. Ее разработка предполагала создание стеклопластикового корпуса РДТТ, что позволяло в перспективе увеличить массу ИСЗ. В декабре 1955 г. было принято решение: проектировать третью ступень под РДТТ фирмы GCR; двигатель ABL применить позднее в развитие программы.
По проекту, снаряженная РН Vanguard имела длину 22 м[40] (72 фута), стартовую массу примерно 10,3 т (22600 фунтов) и должна была доставить полезный груз в 10,4 кг (23 фунта) на орбиту высотой 500x3500 км. Таким образом, «Авангард» — один из самых миниатюрных космических носителей.
Старты «Авангарда» планировались с мыса Канаверал (шт. Флорида), этот полигон интенсивно расширялся для испытательных полетов больших баллистических ракет. Лаборатория NRL надеялась использовать уже имеющийся задел. Однако «авиаторы» (ВВС) вынудили «моряков» (ВМС) построить на мысе собственный пусковой комплекс и средства слежения, чтобы они никак не взаимодействовали с программой отработки боевых ракет.
Корпорация Bendix получила контракт на разработку, изготовление и развертывание системы слежения MINITRACK. Эта система с несущей частотой 108 МГц, максимальной дальностью действия (при мощности бортового передатчика 10 мВт) до 2400 км применялась для измерения элементов орбиты многих ранних спутников США. Наземная ее часть включала антенные поля вдоль направлений «север-юг» и «восток-запад», измерения осуществлялись разностно-дальномерным способом.
Была также развернута сеть оптических и радиостанций для сопровождения спутника и приема телеметрической и научной информации. К концу 1956 г. РН Vanguard вышла на летно-конструкторские испытания.
План ЛКИ предусматривал четыре-шесть запусков «испытательных носителей» TV (Test Vehicle) и шесть «рабочих» полетов «космических носителей» SLV (Space Launch Vehicle). По первоначальному проекту, TV должны были нести только ГО, но в июле 1957 г. было решено, что «экспериментальный микроспутник» массой 1,47 кг (3,25 фунта) и диаметром 16 см (6,4 дюйма), оснащенный передатчиком, в случае успеха мог бы подтвердить, что орбита достигнута.
Первый пуск 8 декабря 1956 г. (TV-0), в котором использовался прототип первой ступени (ракета Viking-13), позволил проверить работоспособность систем слежения и приема телеметрии на мысе Канаверал.
Ракета Viking-13, запущенная по программе Vanguard (Фото Glenn T.Martin (Locheed Martin)).
В пуске 1 мая 1957 г. (TV-1) была успешно испытана «космическая головная часть» РН Vanguard. «Старина» Viking-14 разогнал твердотопливный двигатель третьей ступени фирмы GCR по баллистической траектории, в апогее (195 км) которой включились маленькие пороховые движки, закрутившие «вращающийся стол» и, одновременно, затормозившие пустую первую ступень. Затем последовал сигнал на воспламенение основного РДТТ — и передача телеметрии прекратилась. Как считают специалисты, газовая струя повредила антенные устройства или передатчики РН.
Наконец, первый «реальный» носитель Vanguard был испытан во время полета TV-2. Это был тест первой ступени с двигателем Х-405 и макетами верхних ступеней общей массой около 1800 кг. 23 октября 1957 г., уже после запуска «Спутника-1», TV-2 «забросил» ПГ на высоту 175 км, продемонстрировав устойчивый полет и нормальную работу ЖРД первой ступени. После отсечки двигателя произошло очень чистое разделение ступеней.
Уилльям Холидей (William Holaday), который отвечал за разработку управляемых ракет в министерстве обороны США, и менеджер программы Джон Хаген проинформировали президента Эйзенхауэра о состоянии проекта Vanguard и планах запуска TV-3. Было подчеркнуто, что этот полет — испытательный, но с определенной вероятностью достижения спутником орбиты. В атмосфере истерически раздуваемого ажиотажа «гонки за русскими» Белый дом и средства массовой информации США подали предстоящий запуск Vanguard TV-3 как «американский ответ» на «Спутник».
Вообще говоря, ракета TV-3 предназначалась для первых ЛКИ второй ступени. Да, на ее борту стоял «шарик» массой 1,542 кг, который мог бы стать первым американским ИСЗ. Но…
Руководство программы осознавало: шансы на успешный запуск ИСЗ с первого раза очень невелики — в частности, еще не полностью отлажена первая ступень, а вторая и вовсе ни разу не испытывалась в полете… Тем не менее, помощник президента по делам печати заявил 9 октября, что ракета «Авангард» запустит спутник уже в декабре! И еще: вся Америка страстно желает получить подтверждение тому, что ее наука и техника тоже чего-то стоят!
Носитель TV-3 (а точнее, элементы для сборки сразу двух РН) прибыл на мыс Канаверал через неделю после триумфа «Спутника-2». Спешно началась подготовка к запуску.
Старт, первоначально назначенный на 4 декабря, был перенесен из-за погодных условий на 6-е. Вечером 5 декабря начался пятичасовой предстартовый отсчет времени. Он неоднократно прерывался из-за мелких неувязок и был закончен часовой готовностью в 10:30 утра следующего дня.
За час до пуска башню обслуживания отвели на безопасное расстояние. Надежда Запада — «Авангард» — стоял, удерживаемый в вертикальном положении только тросами-растяжками и шпильками в хвостовой части, срезаемыми при старте. Рядом с РН возвышалась кабель-заправочная мачта. Единственная причина, по которой еще можно было отменить старт, — это порывы ветра более 7,5 м/сек.
В Т-30 мин обслуживающий персонал покинул стартовую площадку. В Т-21 мин станции слежения доложили о готовности к приему телеметрической информации. В Т-02 мин была включена система водного охлаждения стартового стола. В Т-01 мин отстрелились тросы, удерживающие ракету. В Т-45 сек с борта носителя стали поступать телеметрические сигналы о работе систем. ВТ-10 сек были наддуты сжатым газом от наземных источников баки ракеты, за секунду до старта включилось автоматическое устройство управления полетом.
Старт РН Vanguard 6 декабря 1957 г. Америка в погоне за русскими. Мир затаил дыхание… (Фото NASA).
… и взрыв РН спустя несколько мгновений («Вот это "флопник"!») (Фото US Navy).
Двигатель запустился, и РН начала подъем. Носитель покинул площадку в 11:44:34. Внезапно ракета остановилась, а потом завалилась назад, на стартовый стол…
Вот как описывает эти мгновения главный двигателист проекта Vanguard Курт Стелинг (Kurt Stehling), который находился тогда в блокгаузе управления: «Показалось, что распахнулись врата ада. Сверкающие клинки пламени ударили во все стороны из-под ракетного двигателя. Носитель агонизирующе затрясся, на секунду остановился, приподнялся снова и на наших глазах разломился надвое. Нижняя часть вспыхнула. Это напоминало очень быстрое сгорание оплывшего воскового огарка, вставленного в вытяжную трубу. Верхняя часть беззвучно отлетела в сторону, по пути подожгла испытательный стенд и рухнула с оглушительным грохотом, который проник даже сквозь бетонные стены двухфутовой толщины…».
В результате взрыва были полностью уничтожены две первые ступени РН, повреждена третья. Как ни странно, спутник уцелел: маленький закопченый шарик с разбитыми солнечными элементами и погнутыми антеннами залетел в ближайшие кусты и бодро посылал оттуда в пространство свои «космические» радиосигналы…
Что же вызвало эту катастрофу?
По некоторым данным, скачкообразный «провал» давления подачи топлива привел к забросу пламени из камеры сгорания через форсуночную головку внутрь топливных трубопроводов, пожар и взрыв РН.
Уже упоминавшийся сенатор Л.Джонсон охарактеризовал это событие как «одну из самых разрекламированных и наиболее унизительных неудач в нашей истории». Лучше не скажешь…
Бесславную попытку запуска космического первенца восприняли в США как национальную катастрофу. Град обидных насмешек и издевательских сопоставлений обрушился на Америку. На первой странице лондонской Daily Herald были помещены две фотографии: РН Vanguard перед стартом — и то, что осталось от нее после взрыва. Гигантский заголовок гласил: «Вот это «флопник»! (от англ. to flop — плюхнуться, шлепнуться, провалиться).
После неудачи с «Авангардом» получил «добро» на космическую попытку Вернер фон Браун. Он не упустит своего шанса, но это случится уже в следующем — 1958 — году.
В декабре ракета Vanguard TV-3BU (дублер третьего испытательного носителя) была в спешке собрана и установлена на отремонтированный стартовый стол для запуска 23 января 1958 г. Три попытки окончились неудачей, причем последняя прервалась за 14 сек до старта, когда окислитель 2-й ступени — азотная кислота — протек из бака и повредил двигатель.
TV-3BU пришлось «оставить в покое», так как после ремонта РН можно было пускать лишь в феврале. Армия «схватила-таки за хвост птицу-славу», запустив РН Jupiter С с первым американским ИСЗ Explorer 1…
Ракета TV-3BU красиво ушла со старта ранним утром 5 февраля, окутанная клубами испаряющегося кислорода. Но система управления «сбоила», плохо работали приводы — двигатель Х-405 мог качаться только в одной плоскости. Отклонившуюся от курса РН на 57-й секунде полета взорвали по команде офицера безопасности полигона на высоте 6100 м.
Следующим стал TV-4. РН поставили на стартовый стол 8 февраля. Запуск планировали на 5–6 марта — но после трех неудачных попыток его отсрочили на 10 дней. И злой рок, преследующий «Авангард», отступил! Старт состоялся 17 марта 1958 г. в 7:15; вторая ступень, отделившись от первой на 150-й сек, нормально включилась и «почти штатно» отработала: во всяком случае, система газовых сопел легко скомпенсировала возникшую при ее работе ошибку в ориентации (2°). Затем третья ступень и ПГ были стабилизированы вращением и на 490-й сек отделены от второй ступени. РДТТ третьей ступени включился по команде программно-временного устройства и разогнал спутник до орбитальной скорости.
Sic transit gloria mundi… Обломки TV-3 на поврежденном стартовом столе (Фото из архива Центра Кеннеди).
Курт Стелинг стоял в телетайпной комнате на мысе Канаверал, ожидая сообщения, что сигнал спутника с орбиты получен. Прошло уже более 90 мин с момента фиксации последнего сигнала «Авангарда». Стелинг «сдался» и направился к своему автомобилю, когда «вдруг услышал невообразимый рев, как будто начался пожар: в один миг книги, ботинки и прочие носимые вещи полетели с балкона вниз, в ангар»!
Сигнал приняла станция системы MINITRACK в Сан-Диего: орбита оказалась выше ожидаемой, отсюда и задержка сигнала.
С момента, когда комиссия Г.Стюарта проголосовала за «Авангард», прошло 2 года 6 месяцев и 8 дней. Программа достигла заявленной цели — запуск СПУТНИКА в течение МГГ СОСТОЯЛСЯ (язвительные американские СМИ приписали этот успех технику, который прикрутил медаль «Святого Кристофера» к блоку системы управления на второй ступени РН).
ИСЗ массой 1,474 кг (3,25 фунта) и отработавшая третья ступень РН массой 22,59 кг (49,8 фунта) оказались на орбите со следующими параметрами:
— наклонение — 34,25°;
— перигей — 650 км;
— апогей — 3968 км;
— период обращения — 134,18 мин.
Знаменитый «грейпфрут» — макет ИСЗ Vanguard 1 в натуральную величину держит один из его разработчиков Р.Итон (Roger Eaton) (Фото NRL).
Vanguard 1 имел форму сферы диаметром 16,3 см. В корпусе спутника, изготовленном из алюминиевого сплава, имелись два передатчика — первый (108,00 Мгц, 10 мВт) получал питание от ртутных аккумуляторов, рассчитанных на две недели функционирования; второй (108,03 Мгц, 5 мВт) запитывался от солнечных батарей. Оба работали на турникетную и дипольную антенны (всего шесть штырей длиной по 39,4 см).
Шесть блоков СБ (в каждом по 18 кремниевых элементов размером 20х5хО,064 мм) размещались симметрично на поверхности ИСЗ так, чтобы по крайней мере один из них был обращен к Солнцу. В то время, как аккумуляторы спутника «сдохли» через три недели, блоки СБ питали передатчик «Авангарда-1» еще шесть с лишним лет. И наконец, он еще кружит по орбите, самый старый искусственный объект в космосе!
Хотя почти все мировые СМИ изощренно насмехались над крошечным американским легковесом, он показал, что может быть полезен науке. Орбита «Авангарда-1» оказалась настолько удачной, что с ее помощью была уточнена форма Земли и выявлены ранее неизвестные аномалии гравитационного поля планеты.
Немедленно началась подготовка к пуску последнего «испытательного» носителя TV-5, который должен был нести первый «полный» спутник массой 9,752 кг. Основным ПГ «испытательных» ракет серии TV были не спутники, а телеметрическая аппаратура контроля функционирования систем РН. Она устанавливалась на всех ступенях (кроме последней) и значительно уменьшала массу ИСЗ. В «рабочих» носителях серии SLV этой аппаратуры не было, что позволяло запустить «полный» спутник типа Vanguard — сферу диаметром около 50 см (20 дюймов) и массой около 9 кг (20 фунтов).
28 апреля 1958 г. TV-5 стартовал без осложнений. Но спутник орбиты не достиг — из-за электрического сбоя операции по отсечке ЖРД второй ступени прошли нештатно, и система управления на пассивном участке полета «замолчала». В итоге, третья ступень запуститься не смогла. Спутник пролетел по суборбитальной траектории 2400 км и рухнул в океан…
27 мая полетом SLV-1 начался «эксплуатационный» этап программы Vanguard. Первая попытка успехом не увенчалась: из-за неисправности в системе управления третья ступень запустилась под углом примерно 63° к горизонту. Естественно, ни о каком достижении орбиты не могло быть и речи — спутник массой 9,752 кг с высоты 3,5 тыс км упал в 12 тыс км от старта.
SLV-2 удовлетворительно стартовал 26 июня, но ЖРД второй ступени проработал всего 8 сек. Спутник массой 9,752 кг для исследования рентгеновских лучей погиб.
26 сентября 1958 г. с нового мобильного стартового стола был запущен SLV-3. Из-за неисправности клапана подачи окислителя тяга ЖРД второй ступени оказалась ниже расчетного минимума. ПГ достиг высоты 426 км и, после окончания работы третьей ступени…недобрал всего 76 м/с до орбитальной скорости! Спутник сгорел, так и не замкнув свой первый виток…
«Полный» спутник Vanguard позирует перед запуском (Фото NASA).
После четырех аварий подряд пришлось серьезно заняться повышением надежности РН. По прошествии пяти месяцев группа NRL, уже под патронажем нового гражданского Управления по аэронавтике и исследованию космического пространства NASA (National Aeronautical and Space Administration), была готова продолжить штурм космоса. К началу 1959 г. компоненты SLV-4 были собраны и проверены на пусковом комплексе LC-18A Восточного испытательного полигона во Флориде. ПГ — один из «стандартных» спутников, полированная сфера диаметром 50,8 см из магниевого сплава с многослойным гальваническим покрытием. В центре сферы подвешен цилиндрический контейнер с радио— и научной аппаратурой, а также ртутными аккумуляторами на две недели активного существования. Вблизи «экватора» спутника, на противоположных сторонах — два инфракрасных фотоэлемента[41]. За счет вращения ИСЗ при движении его по орбите они сканировали видимый диск Земли. С их помощью предполагалось определять примерную высоту и толщину облачного покрова. Для регистрации бортовой информации служил миниатюрный магнитофон. ИСЗ был снабжен турникетной антенной (четыре штыря длиной по 74 см).
17 февраля 1959 г. SLV-4 гладко стартовал и устремился в космос. Спутник Vanguard 2 массой 10,8 кг (23,7 фунта) вышел на орбиту с параметрами:
— наклонение — 32,9°;
— высота перигея — 557 км;
— высота апогея — 3319 км;
— период обращения — 125,7 мин.
Разделение КА и последней ступени выполнялось с помощью пружинного толкателя. Спутник отделился штатно, однако из-за догорания остатков топлива отработавшая третья ступень столкнулась с аппаратом, нарушив его «жесткую» стабилизацию вращением (скорость закрутки ИСЗ уменьшилась с 50 до 15 об/мин). Ось вращения нутировала, спутник стал кувыркаться.
На Земле не смогли собрать в одну картинку сигналы от фотоэлементов, которые непредсказуемо-хаотически «чиркали» по диску планеты. Эксперименты с «первым в мире метеоспутником» не получились…
Сборка «первого метеоспутника» Vanguard 2. Именно с таких — маленьких и примитивных по современным меркам аппаратов начиналась великая дорога в космос (Фото NRL).
Груз для SLV-5 резко отличался от ИСЗ, запускавшихся ранее. КА массой 10,6 кг (23,3 фунта) состоял, фактически, из пары спутников. Первый — Vanguard 3А — был сферой диаметром 33 см (13 дюймов) из стекловолокна, несущей протонный магнитометр для уточнения карты магнитного поля Земли. Над ним, на цилиндре диаметром 6,4 см (2,5 дюйма) и длиной 44,5 см (17,5 дюйма) был установлен Vanguard 3В — пассивный КА из многослойной пленки (майлар плюс алюминиевая фольга). После разделения этот «субспутник» раздувался в шар диаметром 0,76 м (30 дюймов). Он не нес никакого оборудования и предназначался исключительно для оптического сопровождения с Земли. С его помощью предполагалось уточнить плотность верхних слоев атмосферы.
К сожалению, новаторскую методику одновременного запуска нескольких ИСЗ так и не удалось проверить «в деле». SLV-5, стартовавший 13 апреля 1959 г., потерпел аварию: отказала система управления второй ступени по каналу тангажа.
Эта неудача в очередной раз больно ударила по престижу Соединенных Штатов. NASA отменило практику присвоения официальных обозначений для КА, которые еще не достигли орбиты.
Следующий ИСЗ Vanguard массой 10,8 кг, выводимый на орбиту с наклонением 48°, должен был измерить радиационный баланс Земли над большей частью ее поверхности.
Вследствие высокого наклонения расчетной орбиты носитель SLV-6 должен был реализовать дотоле не опробованный маневр по курсу вскоре после запуска.
22 июня 1959 г. РН стартовала и успешно повернула азимут выведения. Но, как это слишком часто случалось прежде, все пошло «псу под хвост». После включения двигателя второй ступени упало давление в баках. Предполагается, что из-за перегрева взорвался баллон с газом наддува — гелием…
Стандартный «20-дюймовый» Vanguard: 1 — антенна (в сложенном положении); 2 — датчик давления; 3,10 — датчик метеорной эрозии; 4, 9 — датчики температуры; 5 — «киндер-сюрприз» — блок электроники; 6 — устройство отделения спутника; 7 — третья ступень РН; 8 — датчик лайман-альфа излучения; 11 — ионизационная камера; 12 — «этажерка» с печатными платами и аккумуляторами.
Последний — «сверхштатный» — этап программы Vanguard заключался в реабилитации концепции этой ракеты, на которой многие уже поставили крест. Команда «Авангарда» располагала последней летной РН из первоначальной партии при твердом нежелании NASA заказать еще ракеты.
Использовав матчасть TV-4BU, работники GLM демонтировали испытательную и контрольно-измерительную аппаратуру и «подновили» ракету, которая получила название SLV-7. В отличие от остальных РН проекта, на которых применялась третья ступень фирмы GCR, на «новой» ракете был наконец-то установлен более совершенный РДТТ Х-248, разработанный Аллеганской баллистической лабораторией. Этот двигатель уже слетал три раза на космической РН Thor-Able. Замена третьей ступени позволяла поднять первоначальную грузоподъемность «Авангарда» более чем вдвое.
Спутник Vanguard 3 (Фото NASA).
ИСЗ массой 23,8 кг (52,3 фунта) по приборному составу был эквивалентен двум «стандартным» спутникам. Конструктивно он представлял собой сферу из магниевого сплава, соединенную со стеклопластиковым конусом, переходящим в цилиндр. Диаметр сферы — 50,8 см, высота конуса и цилиндра — 66 см.
На спутнике была установлена следующая научная аппаратура:
— протонный магнитометр;
— две ионизационные камеры;
— три термистора для измерения температуры;
— два микрофона для обнаружения потоков микрометеорных тел.
Передатчики (108,00 МГц, 80 мВт и 108,03 Мгц, 80 мВт) получали питание от солнечных элементов (4 шт.) и серебряно-цинковых батарей.
Все данные записывались на бортовой магнитофон и сбрасывались при пролете над наземной приемной станцией.
SLV-7 стартовал 18 сентября 1959 г. К радости участников проекта, все прошло штатно — спутник Vanguard 3 вышел на орбиту с параметрами:
— наклонение — 33,35°;
— высота перигея — 512 км;
— высота апогея — 3744 км;
— период обращения — 130 мин.
Чтобы упростить проект и одновременно «подрасти» в глазах публики, 3-я ступень от ИСЗ не отделялась. Таким образом, общая масса, выведенная на орбиту, равнялась 43,0 кг (94,6 фунта) — почти в 30 раз больше массы «грейпфрута» Vanguard 1!
Схема ракеты-носителя Vanguard: 1 — приемник воздушного давления; 2 — ГО; 3 — экспериментальный спутник Vanguard 1; 4 — РДТТ фирмы GCR; 5 — отсек системы управления; 6 — баки второй ступени; 7 — ЖРД второй ступени; 8 — баки первой ступени; 9 — баллон с перекисью водорода; 10 — ЖРД первой ступени; 11 — сопла управления по крену.
Перед тем, как затихнуть 8 декабря 1959 г. (по другим данным, 8-14 февраля 1960 г.) — спутник передал значительный объем научных данных.
Эндшпиль первой официальной космической программы США, в отличие от дебюта, удался…
Итог проекта: 11 попыток старта на орбиту, включая 5 испытательных пусков. Лишь три попытки успешны. К концу программы остался один неиспользованный (и не полностью укомплектованный летными ступенями) Vanguard TV-2BU (экспонируется в Национальном музее авиации и космонавтики (г. Вашингтон) рядом с Juno I).
Vanguard оставил «наследство»: верхние ступени были применены в сочетании с БРСД Thor для запуска первых американских зондов к Луне. Система Thor— Able в измененном виде в конце концов стала известным носителем Delta, потомки которого летают и поныне. РДТТ Х-248 применялся в составе полностью твердотопливной РН Scout.
Многие бортовые устройства и блоки — миниатюрные и надежные — заимствованы другими программами. На базе решений, опробованных на Vanguard 2, ВМС в 1960-70 гг. реализовали несколько секретных проектов КА радиоразведки. Система слежения MINITRACK явилась первоосновой американской сети сопровождения ИСЗ. И, наконец, методики управления разработкой этого венчурного проекта были приняты и развиты NASA для последующих перспективных миссий.
Хотя значение проекта Vanguard часто принижают — и не в последнюю очередь сами американцы — он оставил в истории космонавтики собственный неповторимый след.
Первый реальный спутник США.
В отличие от СССР, где в начале-середине 1950-х годов межконтинентальными БР (и РН на их основе) занималось ТОЛЬКО ОКБ-1 С.П.Королева, в США ситуация складывалась иначе. Конкурирующие между собой за влияние и ресурсы виды вооруженных сил — в отсутствие внешнего соперника — продвигали СОБСТВЕННЫЕ «космические» проекты (об успехах Советского Союза в ракетостроении было неполное и искаженное представление: с одной стороны, из-за недостатка достоверной информации, с другой, вследствие традиционного «технического снобизма» американцев). ГЛАВНЫМ элементом каждого проекта являлся спутниковый носитель.
История распорядилась так, что ПЕРВЫМ АМЕРИКАНСКИМ ИСЗ стал Explorer 1 («Эксплорер-1»), выведенный на орбиту 31 января 1958 г. ракетой-носителем Jupiter С (Juno I). А основой «Юпитера-С»/ «Юноны», в свою очередь, послужил Redstone («Редстоун») — прямой потомок «оружия возмездия» III Рейха V-2 («Фау-2», А-4).
Разработка первой американской баллистической ракеты, способной нести ядерную боеголовку на расстояние свыше 800 км (500 миль), началась еще осенью 1948 г. Через полтора года к работам была подключена группа специалистов-ракетчиков во главе с Вернером фон Брауном, вывезенная из Германии.
Ракета Redstone[42] являлась глубокой модернизацией А-4. В ноябре 1950 г. этому проекту был дан высший приоритет министерства обороны США[43]. В феврале 1951 г. тактико-технические требования заказчика были изменены (возможно, под влиянием неуязвимости корейских подземных сооружений): массу боеголовки увеличили до 3100 кг (6900 фунтов) с соответствующим уменьшением дальности полета ракеты до 245 км (150 миль).
Подготовка ракеты Redstone в полевых условиях (Фото из архива Редстоунского арсенала).
Фирма North American Aviation установила на «Редстоун» ЖРД XLR-43 (серийное обозначение А-6), созданный путем масштабного увеличения двигателя V-2 до уровня тяги 34 тс (75 тыс фунтов) в течение 110 сек. Как и у прототипа, компоненты топлива — жидкий кислород (окислитель) и этиловый спирт (горючее) — подавались в камеру сгорания посредством ТНА на перекиси водорода.
Ракетой управляла инерциальная СУ ST-80, выдававшая команды на исполнительные органы — графитовые рули, установленные в струе истекающих из сопла газов, и воздушные рули на концах крестообразного аэродинамического стабилизатора.
В отличие от «Фау-2» боеголовка «Редстоуна» (термоядерный заряд W-39 мощностью 2,5 Мт) отделялась от ракеты и при входе в атмосферу стабилизировалась с помощью четырех собственных воздушных рулей.
Опытные изделия были построены в Редстоунском арсенале; серийное изготовление велось корпорацией Chrysler (г. Стерлинг-Хайтс, шт. Мичиган). Первый Redstone стартовал с мыса Канаверал 20 августа 1953 г. — через три года после начала работ по проекту.
В рамках ЛКИ до 1958 г. было запущено 37 ракет, из них по программе Redstone — 12 полетов. Остальные использовались для испытаний компонентов БРСД Jupiter — эти изделия обозначались Jupiter A.
Одним из интересных эпизодов в общем успешной программы ЛКИ были эксперименты «Ньюзрил» (Newsreel), по другим источникам «Хардтэк» (Hardtack), по высотным ядерным взрывам.
Первый пуск, названный «Тик» (Teak), был проведен 31 июля 1958 г. Боеголовка «Редстоуна» взорвалась на высоте 77 км над атоллом Джонстон, породив огненный шар диаметром 18 км, который был различим даже с Гавайских островов (1250 км от места эксперимента). Ядерный взрыв на девять часов блокировал прохождение коротких радиоволн в районе Тихого океана. Второй пуск, названный «Ориндж» (Orange), был осуществлен 11 августа 1958 г. Аналогичная боеголовка взорвалась на высоте 43 км, при этом потери связи не наблюдалось.
Redstone рассматривался как БР оперативно-тактического назначения т. н. «полевого» базирования, что совершенно не соответствует современным воззрениям на это оружие: для его перевозки, установки, проверки, заправки и запуска требовалась дюжина полуприцепов, фургонов и трейлеров. К моменту поступления на вооружение (1958 г.) система уже считалась слишком громоздкой. «Редстоуны» были развернуты в Европе до 1964 г., затем их сменили более компактные и подвижные твердотопливные комплексы Pershing.
Следует отметить, что в начале 1950-х годов Армия и ВВС США втянулись в борьбу за право монопольной разработки и применения баллистических ракет средней дальности. Причем конкуренция возникла как между разработчиками ракет, так и между разработчиками головных частей: Армия предлагала БРСД Jupiter; ВВС — Thor; Армия считала целесообразным уносимое теплозащитное покрытие ГЧ; ВВС — теплопоглощающее покрытие из бериллия. Поскольку «практика — основа познания», этот спор должен был разрешить эксперимент.
«Выставочный» снимок в цехе сборки БР Redstone. На переднем плане РН Jupiter C со связками ракет Baby Sergeant и спутником Explorer; на отдельных стендах — ЖРД первой ступени и макеты боеголовок (Фото NASA).
Для отработки головных частей с абляционной теплозащитой разработали специальную модификацию ракеты Redstone со стартовой массой около 29 т. За счет замены горючего (вместо спиртового раствора воды, называемого иногда «vodka», стали применять Hydyne — смесь 60 % несимметричного диметилгидразина и 40 % диэтилентриамина) тяга двигателя возросла с 34 до 37,6 тс. А удлинение топливного отсека на 2,4 м позволило увеличить продолжительность работы (при расходе топлива 190 л/с) со 121 с до 155 с. Кроме того, изделие оснастили верхними ступенями — в такой конфигурации ракета получила название Jupiter С, где «С» означает Composite — «составная», «многоступенчатая».
В 1950–1953 гг. Лаборатория реактивного движения JPL (Jet Propulsion Laboratory) Калифорнийского технологического института по заданию Армии США проводила исследования и разработку ракетных топлив, РДТТ и ЖРД, а также систем управления и телеметрии.
В ходе этих работ JPL спроектировала боевую жидкостную ракету Corporal («Капрал») и начала разработку твердотопливной ракеты следующего поколения Sergeant («Сержант»). Для отработки рецептур твердого топлива и конфигураций заряда, определения характеристик запуска и внутрибаллистических параметров, проверки конструкционных и теплозащитных материалов применялся т. н. «модельный» РДТТ, изготовленный в масштабе 1:5 по отношению к полноразмерному двигателю «Сержанта» (иногда его называют «Бэби-Сержант»).
В этот же период Лаборатория начинает проявлять интерес к исследованиям космического пространства. В 1954 г., все более проникаясь идеями фон Брауна, JPL совместно с Управлением баллистических ракет Армии (Army Ballistic Missiles Agency, АВМА) и Управлением научно-исследовательских работ ВМС (ONR) выдвинула предложение по созданию космической РН Orbiter, у которой нижняя ступень представляла собой модификацию БР Redstone, а верхние ступени — связки двигателей от ракет Loki 2A.[44].
Однако уточненный анализ показал: для запуска на околоземную орбиту нужен 31 двигатель Loki, что, учитывая их надежность, делало неприемлемо высокой вероятность отказов. В ходе последующих проработок фон Браун и его коллеги приняли предложение JPL по использованию РДТТ «Бэби-Сержант» для установки на второй, третьей и четвертой ступенях. К июлю 1955 г. проект космической РН «завязался».
Вторая ступень представляла собой кольцевую связку из 11 «модельных» РДТТ Sergeant (каждый длиной 1,2 м, диаметром 15,2 см, развивал в течение шести секунд среднюю тягу 0,68 тс). Внутри этой связки размещались три аналогичных РДТТ третьей ступени. В варианте спутниковой РН сверху монтировалась четвертая ступень — один «модельный» двигатель.
Отделялись верхние ступени от первой пружинными толкателями. Заданную же пространственную ориентацию обеспечивала их предварительная закрутка на специальном «вращающемся столе», установленном на коническом переходнике с приборным оборудованием. Стабилизация вращением позволяла также компенсировать рассогласование тяги единичных РДТТ связки.
Для надежности закрутку верхних ступеней проводили непосредственно перед стартом. Во избежание резонанса с конструкцией ракеты на этапе работы первой ступени была рассчитана программа постепенного увеличения скорости вращения сборки с 550 до 750 об/мин ко второй минуте полета.
Сборка верхних ступеней Jupiter C на плакате (Редстоунский арсенал)…
…и «живьем» в башне обслуживания (Фото NASA).
После вертикального запуска со стартового стола Jupiter C через 157 сек выходил на угол 40° к горизонту. По факту выключения первой ступени срабатывали пироболты — приборный отсек и вращающаяся «труба» верхних ступеней отделялись от бакового отсека первой ступени и разворачивались в горизонтальное положение посредством четырех сопел на сжатом воздухе, расположенных в основании приборного отсека. Когда достигалась вершина баллистического подъема (приблизительно на 247 сек после старта), радиосигнал с Земли зажигал связку РДТТ второй ступени, отделяя «трубу» от приборного отсека. Далее последовательно включались третья и — в космической РН — четвертая ступени.
В первом же испытательном полете, 20 сентября 1956 г., Jupiter C установил рекорд, метнув макет боеголовки массой 39,2 кг (86,5 фунта) на высоту 1094 км (680 миль) и дальность 5311 км (3300 миль). 15 мая 1957 г. на несколько меньшую дальность — 1142 км (710 миль) — был запущен масштабно уменьшенный абляционный «носовой конус» боевой ракеты Jupiter массой 138,1 кг (300 фунтов). Наконец, 8 августа 1957 г. аналогичная «боеголовка» пролетела уже 2140 км (1330 миль) и не разрушившись достигла поверхности земли.
Фото из архива Авиационного и ракетного командования Армии США (16 октября 1957 г.): В. фон Браун рядом с «носовым конусом» ракеты Jupiter C.
…Немедленно после запуска Первого спутника Вернер фон Браун и директор ABMA генерал Джон Медарис (John В. Medaris) убедили нового министра обороны США Нейла МакЭлроя (Neil McElroy) разрешить Армии работы по созданию РН на базе Jupiter С. Предложение, именуемое Project 416, предусматривало запуск четырех ИСЗ за 16,2 млн $.
8 ноября 1957 г. МакЭлрой поручил Армии готовить два «космических» старта в качестве дублеров «Авангарда». В калейдоскопе событий того времени остался факт, что месяцем ранее генерал Медарис на свой страх и риск уже отдал приказ о подготовке Jupiter С в варианте РН…
После «флопника» — титула, которым пресса наградила Vanguard TV-3 — Армии были даны все полномочия вывести Соединенные Штаты в космос. Фон Браун полагал, что его группа будет создавать и спутник, но Медарис солидаризовался с директором J PL доктором Уиллья-мом Пикерингом (William H. Pickering): эту работу сделают его ребята…
Признавая, что искать «инертную» 20-дюймовую сферу в безбрежных просторах космоса исключительно с помощью оптического оборудования после триумфа советских ИСЗ, мягко говоря, несолидно, на спутник решили установить легкие приборы и маломощный передатчик типа того, что создавала NRL для проекта Vanguard.
Группа JPL, которой руководил доктор Джек Фроэлих (Jack E. Froehlich), начала спешную доработку проекта Orbiter. Чтобы не усложнять конструкцию носителя аэродинамическим обтекателем, от сферического КА по типу «Авангарда» отказались и встроили ПГ в не-отделяющийся контейнер, приделанный спереди к четвертой ступени РН. При этом обшивку ИСЗ изготовили из нержавеющей стали, которую отполировали, а сверху нанесли продольные полосы оксида алюминия для штатной работы системы терморегулирования в космосе.
Как вспоминают участники этой работы, КА накладывал «чудовищные» ограничения на аппаратуру. Поскольку обтекателя не было, все элементы, установленные на поверхности ИСЗ, подвергались аэродинамическому нагреву.
Максимальное ускорение, задаваемое последней твердотопливной ступенью РН, составляло ~70 единиц. Наконец, приборы должны были вращаться вместе со спутником и сборкой верхних ступеней с частотой до 750 об/мин.
Монтаж четвертой ступени со спутником Explorer 1 (Фото NASA).
Научная аппаратура ИСЗ была разработана и изготовлена доктором Джеймсом Ван Алленом из Университета штата Айова. Она включала блок обнаружения космических лучей, датчик внутренней температуры, три датчика внешней температуры, датчик температуры носового конуса, микрофон для регистрации ударов микрометеоров и датчик микрометеорной эрозии. Данные с этих приборов передавались на Землю передатчиком мощностью 60 мВт, работающим на частоте 108,03 МГц, и передатчиком 10 мВт на частоте 108,00 МГц. Передающие антенны — две щелевые, непосредственно на корпусе аппарата, и четыре гибких штыря длиной 55,9 см, формирующих турникетную антенну. Вращение спутника вокруг продольной оси позволяло сохранить штыри в разложенном положении[45].
Электропитание обеспечивали никель-кадмиевые химические батареи, которые составляли примерно 40 % массы полезного груза. От них передатчик «большой» мощности должен был работать в течение 31 дня, а передатчик «малой» мощности — в течение 105 дней. Один передатчик «слушала» система MINITRACK, разработанная ВМС по программе Vanguard, другой — система MICROLOCK, созданная JPL.
Схема ракеты-носителя Jupiter С (Juno I): 1 — спутник Explorer 1; 2 — РДТТ четвертой ступени; 3 — связки РДТТ второй и третьей ступеней; 4 — механизм вращения верхних ступеней; 5 — отсек системы управления; 6 — баллон со сжатым воздухом системы управления ориентацией; 7 — бак горючего; 8 — бак окислителя; 9 — трубопровод подачи горючего в двигатель; 10 — ЖРДА-7; 11 — аэродинамические стабилизаторы; 12 — аэродинамические рули; 13 — графитовые газовые рули.
20 декабря 1957 г. самолетом С-124 Globemaster ракету Jupiter C доставили на мыс Канаверал. Почти месяц с ней работали в ангаре Восточного испытательного полигона. С 17 января 1958 г. РН стояла на стартовой площадке LC-26A, где проводился монтаж и балансировка «вращающегося стола» и каждой верхней ступени в отдельности.
Три последних дня января были «зарезервированы» Управлением АВМА как стартовое окно: для обеспечения пуска РН Vanguard и Jupiter C, стартовые площадки которых разделяло не более километра, использовались общие наземные агрегаты и системы. Заметим: при неудачном запуске «армейцы» могли повторить попытку только в марте.
Предпусковые операции начались 31 января 1958 г. в 13 ч 30 мин по местному времени. Через два часа специалисты приступили к заправке ракеты. За 12 сек до старта были запущены электромоторы закрутки верхних ступеней. В 22 ч 40 мин включился двигатель, и ракета Jupiter C, «задним числом» переименованная в Juno I, стала набирать высоту.
Поскольку бортовое оборудование РН не позволяло автоматически определять ее траекторные параметры, их рассчитывали специалисты наземных служб. На вычисления ушло не более четырех минут (!), и в момент Т+404 сек с Земли последовала радиокоманда на запуск второй ступени.
У.Пикеринг, Дж. Ван Ален и В. фон Браун с макетом «Эксплорера-1». Америка в космосе! (Фото из архива Редстоунского арсенала).
Никто не мог со 100 %-ной уверенностью заявить, что спутник на орбите. Лишь через 117 минут «агонизирующего ожидания» станция в Калифорнии приняла радиосигнал ИСЗ, подтвердив, что первый виток вокруг Земли замкнут. Чудо свершилось!
Первый американский спутник вышел на орбиту с параметрами:
— перигей — 360 км (224 мили);
— апогей — 2534 км (1575 миль);
— наклонение — 33,3°;
— период обращения 114,9 мин.
В JPL спутник в рабочем порядке именовали RTV-7 или Deal 1, но он стал известен миру как Explorer 1[46].
Общая масса ИСЗ составила 13,9 кг (30,66 фунта), из которых 8,32 кг (18,35 фунта) приходилось на приборы.
Запуск первого американского спутника вызвал небывалый подъем национального настроения. В Вашингтоне ликующий В. фон Браун объявил: «Мы создали собственный плацдарм в космосе. Никогда больше мы не сдадимся!».
Хроника последующих событий такова.
5 марта 1958 г. «армейцы» предприняли неудачную попытку вывести на орбиту Explorer 2 массой 14,22 кг — не включилась четвертая ступень РН.
26 марта на орбиту вышел ИСЗ Explorer 3 массой 14,06 кг, а 26 июля — Explorer 4 массой 16,86 кг.
24 августа предпринята попытка запуска спутника Explorer 5 массой 16,86 кг. Авария: первая ступень столкнулась со второй после разделения, нарушив необходимый угол запуска верхней сборки.
Последний оставшийся экземпляр РН Jupiter С предназначался для ИСЗ, который можно было бы наблюдать невооруженным глазом — до этого все американские спутники являлись «невидимками». «Зеркальный» надувной Beacon («Маяк») диаметром 3,66 м (12 футов) первоначально определили на РН Vanguard. Но эта ракета терпела одну аварию за другой, и в апреле 1958 г. было решено «пересесть» на Jupiter C. К несчастью, при запуске 23 октября нештатно отделилась вторая ступень РН…
Старт РН Jupiter C (Juno I) со спутником Explorer 1 (Фото NASA).
«Мощный» передатчик функционировал около двух недель, прием данных с другого прекратился 23 мая 1958 г. Несмотря на непродолжительный срок активного существования, Explorer 1 позволил получить ряд важных данных о космическом пространстве — в частности, было выявлено наличие у Земли радиационных поясов.
Спутник оставался на орбите до 31 марта 1970 г.
На этом карьера Jupiter C (Juno I) закончилась. Но сей «потомок» V-2 еще послужил космонавтике.
Верхние ступени с РДТТ были использованы в новой РН, где первая ступень (с ЖРД) была заимствована от БРСД Jupiter (вместо ракеты Redstone). В 1958–1961 гг. ракета Juno II совершила 10 космических стартов, из которых «успешными» считаются 3 орбитальных и «частично успешными» 2 пуска к Луне. В данной программе корпус РДТТ четвертой ступени впервые был изготовлен из титанового сплава.
Модифицированная ракета Redstone применялась в 1961 г. для суборбитальных «подскоков» американских пилотируемых кораблей перед выполнением первых орбитальных полетов. «Подскоки» позволили оценить надежность корабля Mercury, возможности астронавтов, а также подготовить наземный персонал и службы спасения.
После проведения с ноября 1966 г. по октябрь 1967 г. девяти пусков «Редстоунов»[47] в рамках совместного американо- британо-австралийского проекта SPARTA (SPecial Anti-missile Research Tests, Australia — Специальные летно-конструкторские испытания по противоракетной программе в Австралии) австралийское правительство получило разрешение использовать последнюю (резервную) ракету в качестве спутникового носителя.
160-фунтовый (72,6 кг) спутник WRESAT был оперативно изготовлен и испытан «Учреждением по исследованию оружия» WRE (Weapons Research Establishment).
WRESAT нес научные приборы, подобные тем, что летали на зондирующих ракетах (преимущественно, датчики для исследования верхних слоев атмосферы). Он был запущен 29 ноября 1967 г. с полигона Вумера и вышел на орбиту с параметрами:
— перигей — 198 км;
— апогей — 1252 км;
— наклонение — 83,3°;
— период обращения — 99,3 мин.
Основные модификации ракеты Redstone: вариант для летных испытаний, тактическая ракета Redstone Block II, РН боеголовок Jupiter С, спутниковая РН Juno I, PH Mercuty-Redstone, РН SPARTA.
Первый австралийский ИСЗ совершил 642 оборота вокруг Земли и передал научные данные с 73 витков. Он вошел в атмосферу 10 октября 1968 г.
Энтузиасты космонавтики отыскали первую ступень РН Redstone-WRESAT в пустыне Симпсона в апреле 1990 г. Разбитая, но на удивление хорошо сохранившаяся, она демонстрируется ныне в ракетном парке напротив «Центра наследия Вумера» (Woomera Heritage Centre).
WRESAT стал последним запуском ракеты Redstone. Заслужив прозвище «надежный старина» (Old Reliable), ракета, составившая основу первой американской РН, заняла свое место в галерее истории…
Совершенно секретный NOTSNIK.
Помимо официально известных проектов Vanguard и Jupiter С, Соединенные Штаты пытались участвовать в «космической гонке» еще с одной — и весьма оригинальной — программой.
Вскоре после запуска Первого спутника группа инженеров военно-морских сил США инициировала совершенно секретный «Проект Пайлот» (Project Pilot), который предполагал создание и запуск разведывательных, инспекционных и навигационных ИСЗ, а также отработку системы перехвата вражеских КА, что представлялось наиболее важным. Планировалось выполнить программу быстро и при достаточно скромных ассигнованиях.
Особая роль отводилась Станции по испытаниям вооружения ВМС NOTS (Naval Ordnance Test Station) в Чайна-Лейк, шт. Калифорния, которая работала под руководством Главного управления вооружения ВМС BuOrd (Bureau of Ordnance) и с 1943 г. отвечала за разработку ракет для Флота. В качестве «пробного шара» решили «посмотреть» твердотопливный носитель на базе армейских тактических ракет Sergeant, однако Армия отказалась предоставить двигатели.
Примечательное фото: под крылом «Скайрэя» изделие «от NOTS» (Фото NOTS).
Новое предложение, оформленное к началу 1958 г.[48], базировалось на шестиступенчатой РН с воздушным запуском, которая должна была создаваться из материально-технических средств, имеющихся в распоряжении ВМС.
В самом начале 1958 г. Джон Николаидес (John Nikolaides), технический директор космического отдела BuOrd (созданного вскоре после запуска первого ИСЗ), одобрил проект и предложил немедленно начать разработку, чтобы выполнить ее за четыре месяца в рамках бюджета в 300 тыс $. «Злые языки» отреагировали немедленно: Project Pilot получил неофициальное наименование NOTSNIK[49] (сочетание NOTS и НИКолаидес в подражание слову «Спутник»)…
Здесь «моряки» (BuOrd) в известном смысле конкурировали с «авиаторами» (Научно-исследовательским отделом ВВС), которые вели работы по программе Farside («космический» вариант концепции «Рокун» — старт ракеты с высотного воздушного шара). Альтернативная концепция «Рокэйр»[50] — старт РН со скоростного высотного самолета — послужила основой космического комплекса «от NOTS».
16 августа 1955 г. с самолета F2H2, принадлежащего ВМС, впервые была запущена «в зенит» неуправляемая пороховая ракета «воздух-воздух» калибра 69,7 мм (2,75 дюйма). Эта довольно слабая «ровесница» корейской войны достигла высоты 55 км (180 тыс футов)! Военный потенциал «Рокэйра» был налицо — и в открытой печати стали явно доминировать «Рокуны»…
В качестве «первой ступени» системы NOTSNIK предполагалось применить модифицированный палубный реактивный истребитель Douglas F-4D-1 Skyray, с которого при кабрировании (подъем с углом 58°, скорость 740 км/ч, высота 12500 м) сбрасывалась ракета.
По компоновке твердотопливный носитель NOTS-EV-1 (масса 950 кг, длина 4,38 м, максимальный диаметр корпуса 76,1 см, размах крестообразного стабилизатора 1,65 м) схож с ракетой Farside-1. Это понятно: массогабаритные характеристики систем воздушного старта задаются жестко, поскольку должны удовлетворять условиям размещения на аэростате («Рокун») либо самолете («Рокэйр»). Ракета NOTS должна была подвешиваться под левым крылом истребителя на стандартном бомбодержателе. Для балансировки под правое крыло вешали сбрасываемый топливный бак аналогичной массы.
Таким образом, NOTSNIK претендовал на звание самой миниатюрной из известных систем запуска ИСЗ, даже с учетом массы самолета-носителя!
Вторая и третья ступени РН состояли из четырех двигателей HOTROC (модификация твердотопливных противолодочных ракет ASROC в едином «корсете»), собранных попарно в связку. Через 3 сек после отделения от самолета запускалась первая пара ракет, а через 12 сек после их выключения — вторая. Далее в течение 100 сек носитель двигался по инерции к верхней точке баллистической траектории, где на высоте 71 км конструктив пустых второй и третьей ступеней отделялся, и происходил запуск следующей ступени.
Схема ракеты-носителя NOTSNIK: 1 — спутник; 2 — РДТТ шестой ступени; 3 — РДТТ пятой ступени; 4 — РДТТ четвертой ступени; 5 — обтекатель; 6 — РДТТ второй/третьей ступеней; 7 — аэродинамический стабилизатор.
На четвертой ступени стоял двигатель Х-241, разработанный Аллеганской баллистической лабораторией для третьей ступени РН Vanguard (впоследствии заменен на Х-248 компании Thiokol Chemical).
Через 3 сек после выгорания четвертой ступени включался двигатель NOTS-100 пятой (он, также как и РДТТ шестой ступени, был самостоятельно разработан NOTS в рамках «Проекта Пайлот»).
После выключения пятой ступени NOTSNIK оказывался на околополярной орбите с перигеем около 60 км и апогеем 2400 км, где вряд ли мог выполнить хоть один полный виток. Для «скругления» орбиты через 53 мин 20 сек полета в апогее необходимо было включить совсем крошечный двигатель шестой ступени, интегрированный с полезным грузом. Этот РДТТ поднимал перигей орбиты до безопасной высоты.
Специально отметим, что РН не имела системы управления (во всяком случае, ни в одном из источников о наличии такой системы не говорится, упоминаются лишь плановые задержки между включениями РДТТ). Вторая/третья ступень стабилизировалась аэродинамически, все последующие — закруткой.
Модель самолета F-4D-1 Skyray с ракетой-носителем NOTSNIK под крылом (Фото с сайта mek.cosmo.cz).
Спутник представлял собой аппарат торообразной формы массой 1,04 кг (2,3 фунта) и диаметром около 20 см[51]. Он получал электропитание от аккумуляторов и нес единственный «научный» прибор — инфракрасный (ИК) сканер.
Этот достаточно примитивный датчик предназначался для получения изображений земной поверхности. Маленькое зеркальце фокусировало принятое оптическое излучение на ИК-фотоэлементе, вращение КА вокруг главной оси инерции давало «строки» изображения, а поступательное движение спутника позволяло формировать «кадр» целиком. Работа сканера была экспериментально проверена на самолете: качество изображения оказалось весьма низким, но данный опыт мог пригодиться для создания перспективных ИК-систем в будущем.
Для приема информации со спутника были созданы специальные транспортабельные станции, которые оперативно развертывались во всех частях земного шара. Персонал, состоящий из военных моряков, должен был получить сигнал и передать его в Чайна-Лейк для дешифровки изображения. Однако основной задачей сети станций являлось подтверждение факта выхода ИСЗ на орбиту, так как небольшие размеры аппарата не позволяли засечь его оптическими средствами, а малая емкость батарей гарантировала передачу сигнала только с первых трех витков.
Противоспутниковая миссия «Нотсника» заключалась в том, чтобы сбивать вражеские КА над укромными уголками Мирового океана (мощные судовые локаторы обнаруживали ИСЗ противника и наводили на него ракету-перехватчик, запускаемую либо с корабля, либо с самолета-носителя).
Главным идеологом легкого космического перехватчика был Уилльям МакЛин (William McLean), «отец» чрезвычайно простой и удачной ракеты «воздух — воздух» Sidewinder, которая уже около 50 лет, совершенствуясь, стоит на вооружении авиации США; ее «клоны» были созданы в СССР (под индексом К-13), Франции (Magic), Израиле (Shaphrir, Pithon), ЮАР (Coockree)…
Осознавая, что ИСЗ разведки способны оперативно вскрыть развертывание надводных сил флота США, где бы они не находились, МакЛин, как технический директор NOTS и профессиональный разработчик ракетного вооружения авиации ВМС, экстраполировал базовые принципы «дешевого» «Сайдуиндера» для решения задач противо-космической обороны. Что, между прочим, сохраняет свою актуальность и поныне.
Ракета-перехватчик выводила головную часть по баллистической траектории в район цели, где начинался этап самонаведения. Головка самонаведения антиспутника создавалась на базе аналогичного устройства ракеты Sidewinder. Маневрирование осуществлялось с помощью микродвигателей на сжатом газе, а поражение ИСЗ противника — осколочной боевой частью.
Полезный груз перехватчика спутников NOTSNIC II. Снимок датируется 5 мая 1962 г. (Фото US Navy).
Противоспутниковая миссия была еще более секретной, чем собственно NOTSNIK. Ее финансирование пряталось среди множества тем типа SIP, Caleb, Hi-Hoe, Viperscan и т. п., часть которых на деле являлась «пустышками». Сборка как спутника, так и антиспутника велась в особом корпусе на станции NOTS («здание X»), где ранее шло изготовление неядерных компонентов первой американской атомной бомбы. Были задействованы две самые мощные ЭВМ того времени — IBM модели 701/703 и NORC (Naval Ordnance Research Computer), разработанные для программы водородной бомбы.
Для «натурализации» своих инициатив представители NOTS ездили в мае 1958 г. в Вашингтон, где обещали руководству ВМС, что эти ИСЗ проведут радиационный мониторинг проекта «Аргус» (Project Argus) — серии ядерных испытаний США в верхних слоях атмосферы.
Помимо воздушных стартов, прототипы противоспутниковых ракет (в данном случае — Caleb) запускались с наземных установок (Фото NOTS).
Такой подход получил одобрение, и NOTS были выделены фонды на официальной основе, в общей сложности более 4 млн $. При этом летные испытания NOTSNIK предопределялись жесткими сроками предстоящего проекта Argus — в начале августа 1958 г.
В июле 1958 г. были выполнены три попытки запуска спутника NOTSNIK, еще три — в августе. Пять из шести стартов потерпели неудачу из-за различных отказов РН. Исключение составлял запуск 22 августа 1958 г., когда ракета, запущенная с самолета-носителя вблизи побережья Калифорнии, отработала штатно. Оператор наземной станции сопровождения в Крайстчерче, Новая Зеландия, принял «странные слабые сигналы» и сообщил в Центр. Что это было? Успех? Фантом? Мы никогда не узнаем, поскольку новых сигналов не появилось…
Специально оборудованный истребитель F-4D-1 Skyray осуществлял с 1958 г. пуски по проекту NOTSNIK. Запечатлена подготовка к полету с ракетой Caleb (1960 г.) (Фото W.W.West).
Подготовка ракеты Caleb к пуску с самолета F-4H Phantom II (Фото US Navy).
Планы дополнительных полетов NOTSNIK одобрения не получили. Внимание разработчиков переключилось на «антиспутник». Модифицированный NOTSNIK II (Caleb) представлял собой более крупную четырехступенчатую ракету NOTS-EV-2 (длина 5,55 м, диаметр корпуса 61 см, масса 1361 кг), способную при воздушном старте вывести ИСЗ массой до 9 кг. В 1960–1962 гг. было предпринято пять испытательных суборбитальных запусков РН в неполной комплектации — два с истребителя F-4D Skyray и три с F-4H Phantom II. В последнем пуске 26 июля 1962 г. работали две первые ступени, и ракета достигла высоты 1167 км (725,3 мили)[52]; при безупречно сработавшей РН имел место отказ бортовой аппаратуры ПГ.). Вскоре эта программа ВМС была закрыта, поскольку все запуски ИСЗ в интересах министерства обороны решили проводить под патронажем ВВС США.
P.S. 5 апреля 1990 г. крылатый «Пегас» (Pegasus, разработан компанией Orbital Sciences Co.) стал первой ракетой, которая вывела спутник на орбиту, стартовав с самолета. А еще два года спустя нарушили обет молчания участники «Проекта Пайлот», секретного с 1958 года…
«Говорящий» SCORE.
«Это говорит президент Соединенных Штатов. Чудеса техники позволили Вам слышать мой голос со спутника, летящего через космос. Мое послание очень простое. Я передаю Вам и всему человечеству, что Америка желает мира Земле и всем людям доброй воли».
Этот голос принадлежал Дуайту Эйзенхауэру, а спутником была последняя ступень ракеты Atlas 10B — «предок» носителя, который через три года начнет поднимать на орбиту пилотируемые капсулы «Меркурий».
Проект SCORE[53] (Signal Communications by Orbiting Relay Equipment — от английской аббревиатуры «Сигнал связи при помощи релейного оборудования, обращающегося по орбите») был подготовлен в глубокой тайне. ВВС боялись оглушительных неудач: первый пуск «Атласа» в полной трехдвигательной комплектации «не вдохновлял»… Когда Atlas 10B готовился стартовать с мыса Канаверал, лишь 88 человек наверняка знали, что он должен выйти на орбиту, а не исчезнуть в пучинах Атлантического океана, где окончили свой путь предыдущие ракеты этого типа[54].
Сам Эйзенхауэр настоял на тайне проекта SCORE. Всего за 14 месяцев до этого Первый спутник потряс мир, дав «хорошего пинка» американскому техническому снобизму. Месяц спустя Советский Союз вывел в космос Второй спутник с собакой Лайкой. А в мае 1958 г. Россия подняла Третий спутник массой более 1300 кг.
На этом фоне космические достижения Америки выглядели бледно.
Злополучный «Авангард», созданный ВМС, к этому времени насчитывал семь попыток запуска — и лишь в одной вывел на орбиту трехфунтовый спутник — «грейпфрут». Разработанный Армией Juno I (Jupiter С) вывел три спутника в шести пусках. Четыре попытки достичь Луны на новых ракетах Thor-Able (ВВС) и Juno II (Армия) закончились полной неудачей. «Ракетное отставание» — во всяком случае, в плане «космических рекордов» — выглядело как свершившийся факт.
Atlas 10B дал американцам «что-то, чем можно было гордиться». Впервые Америка имела на орбите спутник, достаточно яркий для наблюдения его невооруженным глазом. К тому же он был и самым тяжелым (масса ИСЗ вместе с неотделяемой ступенью носителя — 3970 кг). И пусть полезный груз «Атласа» составлял всего лишь 68 кг (150 фунтов), что меньше, чем у любого русского спутника, лишь немногие американцы интересовались «этими мелочами».
Предметом искусно подогретого общественного интереса стали радиопередачи со спутника. Прозванный в средствах массовой информации «говорящим американским спутником» («America's talking satellite»), он принимал, записывал на магнитофон и передавал телетайпные и голосовые сообщения. Впоследствии и русские («Интернационал», «Луна-10»), и китайцы («Алеет Восток», DFH-1), и даже северо-корейцы («Песня о полководце Ким Ир Сене», «Песня о полководце Ким Чен Ире», «Кванмёнсон-1») с неизбежным — для общественного резонанса — успехом повторяли (или пытались повторить) этот трюк.
Вернемся, однако, к «Атласу».
Принято считать, что концептуально эта ракета родилась в 1946 г. из идеи Карела Боссарта (Karel J. Bossart), технического директора отдела аэронавтики фирмы Convair, который предложил объединить несущую конструкцию и топливные баки ракеты в единое целое, что давало заметные преимущества по сравнению с «классической» А-4 («Фау-2»). В новой схеме устойчивость баков обеспечивал наддув газом, что позволяло дополнительно сэкономить на силовом наборе.
В 1945 г. ВВС США объявили конкурс проектов баллистических ракет и беспилотных крылатых ЛА с дальностью ~8000 км. Среди участников конкурса была и фирма Convair, которая в апреле 1946 г. получила контракт на создание экспериментальной ракеты МХ-774 с четырехкамерным кислородно-спиртовым ЖРД на базе модифицированного двигателя самолета Bell X-1. Несмотря на то, что все ракеты МХ-774 (три летных образца), запущенные в июле — декабре 1948 г., слетали неудачно, в январе 1951 г. ВВС выдали Convair новый контракт МХ-1593 на проведение дальнейших исследований как по крылатой, так и по баллистической ракете с межконтинентальной дальностью. Уже в сентябре 1951 г фирма — основываясь на разработках по МХ-774 — предложила проект МБР Atlas. Ракета имела очень непривычный для того времени вид и представляла собой огромный тонкостенный топливный бак — своеобразный «воздушный шар», жесткость которого поддерживалась давлением газа наддува. В нижней части бака крепилась связка из пяти ЖРД суммарной тягой 295 тс, в верхней — боеголовка. Общая длина МБР должна была составить 27 м, диаметр корпуса — 3,7 м. После пересмотра проекта боеголовки (со снижением массы заряда) габариты «Атласа» удалось уменьшить, сократив длину до 23 м, диаметр до 3,05 м, а в ДУ применить всего три двигателя. В январе 1955 г. Convair получила контракт на разработку этой МБР под обозначением SM-65 в рамках системы оружия WS-107A1.
«Отцы-основатели» проекта Atlas: Карел (Чарли) Боссарт (Karel J. (Charlie) Bossart) — автор идеи несущих баков, менеджер программ МХ-774 и МХ-1593, технический директор проекта; Джим Дэмпси (J.R. (Jim) Dempsey) — с 1954 г. руководитель программы Atlas, в последующем президент отделения Convair Astronautics фирмы General Dynamics (Фото US Air Force).
Еще одна «изюминка» «Атласа» — характерная «полутораступенчатая» схема. При старте включаются три главных (два стартовых и маршевый) и два рулевых двигателя МБР. Через две минуты работы стартовые ЖРД — по бокам маршевого двигателя — сбрасываются. Ракета продолжает полет за счет тяги маршевого и рулевых ЖРД. После отсечки маршевого двигателя «рулевики» добирают скорость до необходимой.
Ракета не имела также приборного отсека в классическом представлении: блоки системы управления размещались в характерных плоских «коробах» по бокам корпуса, которые на долгие годы стали «визитной карточкой» «Атласа».
Первый запуск МБР с мыса Канаверал состоялся 11 июня 1957 г. (модификация «А» — опытный одноступенчатый вариант, оснащенный только двумя стартовыми ЖРД[55]) и был оценен как «частично успешный». На высоте нескольких километров один из двигателей вышел из строя, и ракета стала совершать «произвольные маневры». «Атлас» подорвали через 60 сек после старта по команде с земли. Всего в данной комплектации было проведено восемь пусков (последний — 3 июня 1958 г.). Для проверки концепции и полетов на полную дальность было проведено 23 пуска «полутораступенчатых» ракет Atlas В и С (первый 19 июля 1958 г. — неудачный, последний — 24 августа 1959 г.). Расчетная дальность -8000 км — была достигнута во втором пуске Atlas В 28 августа 1958 г., а в седьмом (28 ноября 1958 г.) установлен рекорд в 10200 км.
Ракета-носитель Atlas-SCORE перед стартом (Фото US Air Force).
Орбитальный полет «Атласа 10В» не был внеплановым мероприятием — он, как и предложения по проектам Vanguard, Juno I, Juno II, Pilot, Thor-Able, значился в секретных директивах по запуску ракет и спутников в рамках программы МГГ, утвержденных президентом США. Программу SCORE курировало Управление по перспективным научным исследованиям ARPA (Advanced Research Projects Agency). Отделение баллистических ракет ВВС предоставило МБР, на которую установили приборы Армейской лаборатории исследований и разработки сигнальной аппаратуры SRDL (US Army Signal Research and Development Laboratory). Поскольку на орбиту предполагалось вывести «всю» ракету, было решено смонтировать ПГ в боковые контейнеры-«короба» «Атласа», где размещалась система управления. Возможности ретрансляции ограничивали малая высота орбиты и невозможность поддержания заданной ориентации антенн. Для накопления и сброса информации использовался магнитофон. Так как надежность оборудования «вызывала беспокойство», к основному магнитофону был добавлен резервный.
Компоновка МБР Atlas B: 1 — отделяемый «носовой конус»; 2 — переднее днище бака; 3 — гаргрот для кабелей; 4 — боковой приборный отсек; 5 — заднее днище бака; 6 — стартовые двигатели; 7 — маршевый двигатель; 8 — рулевые двигатели; 9 — бак окислителя; 10 — промежуточное днище; 11 — бак горючего.
В последний момент в Белом доме решили записать на магнитофон Рождественское послание президента, с которым он мог бы обратиться к миру. Ленту с записью голоса Эйзенхауэра курьер доставил на мыс Канаверал, но спутниковое оборудование было уже «запечатано», ракета стояла на стартовом столе, велась заправка баков компонентами топлива. Послание президента передали на борт «Атласа» по радио из связного трейлера. SCORE покорно записал сообщение на оба магнитофона — основной и резервный. Не проходило опасение, что «голос с орбиты» могут принять за фальшивку.
Старт состоялся 18 декабря 1958 г. в 18:02 по местному времени. Почти «под занавес» МГГ Atlas 10B вышел на орбиту со следующими параметрами:
— наклонение — 32,3°;
— перигей — 184 км;
— апогей — 1480 км;
— период обращения — 101,5 мин.
На первом же витке один из развлекательных радиоканалов Новой Англии катастрофически повлиял на работу основного магнитофона. Лишь на следующий день на кодированные команды с Земли ответил резервный магнитофон, передав послание президента.
Дублирующий комплект оборудования работал устойчиво, выполнив 78 сеансов записи и сброса голосовых сообщений и телеграфных «посылок» между наземными станциями в Джорджии, Техасе, Аризоне и Калифорнии. Через 12 дней ртутные батареи «Скора» выдохлись. 21 января 1959 г. спутник вошел в плотные слои атмосферы Земли и сгорел.
Исходный («полутораступенчатый») «Атлас» мог вывести на орбиту примерно 1300–1400 кг. Но еще до его первого орбитального пуска было очевидно, что для «космической гонки» такой грузоподъемности недостаточно. Началась работа по наращиванию мощи носителя за счет установки верхних ступеней. В итоге, РН Atlas стала надежной «космической лошадью» Соединенных Штатов, а SCORE занял пьедестал первого в истории спутника связи.
Принятые сокращения.
АК — азотная кислота.
АН — Академия наук.
AT — азотный тетроксид.
БР — баллистическая ракета.
БРСД — баллистическая ракета средней дальности.
ВВС — военно-воздушные силы.
ВМС — военно-морские силы.
ГКБ — государственное конструкторское бюро.
ГКЖ — герметичная кабина животного.
ГО — головной обтекатель.
ГЧ — головная часть.
ДУ — двигательная установка.
ЖВ — жидкий водород.
ЖК — жидкий кислород.
ЖРД — жидкостный ракетный двигатель.
ИК— инфракрасный (-ая).
ИП — измерительный пункт.
ИСЗ — искусственный спутник Земли.
КА — космический аппарат.
КБ — конструкторское бюро.
КВО — круговое вероятное отклонение.
КИК — командно-измерительный комплекс.
КРЛ — командная радиолиния.
ЛА — летательный аппарат.
ЛКИ — летно-конструкторские испытания.
МБР — межконтинентальная баллистическая ракета.
МГГ — Международный геофизический год.
МИК— монтажно-испытательный корпус.
МО — министерство обороны.
НДМГ — несимметричный диметилгидразин.
НИИ — научно-исследовательский институт.
НИОКР — научно-исследовательская и опытно-конструкторская работа.
НИП — наземный измерительный пункт.
НИР — научно-исследовательская работа.
ПВО — противовоздушная оборона.
ПГ— полезный груз.
ПРО — противоракетная оборона.
ПС — простейший спутник.
ПУ — пусковая установка.
РДД — ракета дальнего действия.
РДТТ — ракетный двигатель твердого топлива.
РКТ — ракетно-космическая техника.
РЛС — радиолокационная станция.
РН — ракета-носитель.
РСУ — реактивная система управления.
СБ — солнечная батарея.
СЕВ — служба единого времени.
СМ — Совет министров.
СМИ — средства массовой информации.
СТУ — стартовый твердотопливный ускоритель.
СУ — система управления.
ТНА — турбонасосный агрегат.
УРМ — универсальный ракетный модуль.
ЦБ — центральный блок.
ЦК — Центральный комитет.
ЭВМ — электронно-вычислительная машина.
ЭП — эскизный проект.
Примечания.
1.
Термин впервые предложен А.А.Штернфельдом в монографии «Введение в космонавтику», 1933–1937 гг.
2.
Родоначальником крупных управляемых баллистических ракет на жидком топливе является германская А-4 (V-2, «Фау-2») — альтернатива «сверхпушкам», дальним бомбардировщикам, самолетам-снарядам в период Второй мировой войны. Ее появлению во многом «способствовали» ограничения Версальского (договора 1919 г. на разработку немцами «традиционных» видов вооружений: ракеты под эти ограничения не подпадали.
3.
После успешных испытаний отечественных Р-1 и Р-2 работы по изделиям серии «Г» были прекращены, немецкие специалисты возвращены в Германию (1951–1953 гг.).
4.
Работы проводились в соответствии с постановлением СМ СССР от 30 декабря 1949 г. От Академии наук их координировала специальная комиссия во главе с президентом АН С.И.Вавиловым и академиком М.В.Келдышем.
5.
Например, профессор Военно-воздушной инженерной академии имени Н.Е.Жуковского Г.И.Покровский выступил с предложением в точке максимального подъема геофизической ракеты (в ту пору 350–450 км) произвести выстрел кумулятивным пестом. Скорость частиц кумулятивной струи — около 25 км/сек (Г.И.Покровский, 1944 г.) и даже около 90 км/сек (В.Коски, Ф.Ласси, Р.Шреффлер, Ф.Уиллинг, США, 1952 г., бериллиевые облицовки). Таким путем может быть создан некий ИСЗ — «болван» размером с биллиардный шар, который, возможно, был бы доступен наблюдениям в телескопы и/или посредством радиолокаторов.
6.
Понижение в должности, официальная обструкция идеи «пакета» и ИСЗ, запрет заниматься данной тематикой.
7.
Сотрудники группы М.К.Тихонравова в период 1945-56 гг.: И.М.Яцунский, П.И.Иванов, Н.Г.Чернышев, В.Н.Галковский, Г.М.Москаленко, Г.Ю.Максимов, Я.И.Колтунов, А.В.Брыков, Л.Н.Солдатова, И.К.Бажинов, Б.С.Разумихин, О.В.Гурко.
8.
В Соединенных Штатах официальное решение по «Носителю минимального спутника» (Minimum Satellite Vehicle) с инертным ИСЗ массой 2,3 кг было выпущено 15 сентября 1954 г. Разгоняясь перед «прыжком в космос», СССР и США «бежали ноздря в ноздрю».
9.
В переводной литературе встречается также написание Зингер.
10.
Группа изучения реактивного движения — научно-исследовательская и опытно-конструкторская организация по разработке ракет СССР (1931–1933 гг.).
11.
Постановление подписал Председатель СМ СССР И.В.Сталин. Какие планы в этой связи строил «отец народов»? Предчувствовал ли, что из «зернышка» темы Т1 прорастет великое «древо» практической космонавтики? Во всяком случае, масштаб разворачиваемых работ (участвовали десятки научно-исследовательских институтов (НИИ) и конструкторских бюро (КБ) СССР впечатляет. Даже сейчас.
12.
Участвовали С.П.Королёв, В.П.Глушко, В.И.Кузнецов, НА.Пилюгин, В.П.Бармин, Б.М.Коноплев, В.П.Мишин, К.Д.Бушуев, М.И.Борисенко, С.С.Крюков.
13.
В этот день на огневых испытаниях «пакета» с полной заправкой компонентами присутствовал секретарь ЦК КПСС Л.И.Брежнев. Испытания прошли успешно.
14.
После подтверждения результатов пуска лидер страны Н. С.Хрущев решился на этот беспрецедентный для СССР шаг, как полагают, чтобы «одним выстрелом убить двух зайцев», а именно: показать «большую ракетную дубину» и американцам, и собственным «генералам от кавалерии».
15.
Впоследствии — Третий советский ИСЗ. Хронологически именно этот аппарат разрабатывался в СССР как первый искусственный спутник Земли.
16.
При работе по РН в пассивном режиме станции «Бинокль» обеспечивали измерение дальности до 200 км вместо 10000 км при работе по ответчику «Факел».
17.
Наземный измерительный пункт.
18.
Как показала последующая обработка телеметрической информации, при старте ракеты наблюдалось запаздывание выхода на режим промежуточной и главной тяги ДУ блока «Г». Эта задержка могла привести к автоматическому отбою — «сбросу схемы». Блок «Г» вышел на режим менее чем за секунду до контрольной временной точки. На 16-й секунде полета отказала система, управляющая опорожнением топливных баков. Это привело к повышенному расходу горючего и не позволило достичь заданной конечной скорости. ДУ второй ступени (центрального блока) была выключена на 1 секунду раньше расчетного значения аварийным сигналом, который срабатывал при резком повышении оборотов турбины. По этой причине вторая ступень вместе со спутником была выведена на орбиту с апогеем ниже расчетного.
19.
3 октября 1956 г. Королёв обратился с просьбой к Д.Ф.Устинову о назначении М.К.Тихонравова начальником специализированного отдела ОКБ-1 по проектированию КА. На официальной защите ЭП первого ИСЗ Сергей Павлович особо отметил, что проект спутника разработан в ОКБ-1 на основе исследовательских работ группы сотрудников НИИ-4 МО, возглавляемой Михаилом Клавдиевичем.
27 декабря С.П.Королёв запросил и впоследствии получил согласие Главкома артиллерии М.И.Неделина на перевод М.К.Тихонравова из НИИ-4 МО в ОКБ-1.
20.
Антенны оказались перетяжеленными. До конца февраля удалось разработать их новую облегченную конструкцию, которая была одобрена И.В.Лавровым, Е.Ф.Рязановым и утверждена С.С.Крюковым 6 марта 1957 г. Разработчик антенн — лаборатория М.В.Краюшкина.
21.
По воспоминаниям ведущего конструктора ПС О.Г.Ивановского, при предстартовой проверке батарей «… напряжение на нужных контактах штепсельного разъема — ноль! Оглядываюсь — гоголевская немая сцена из «Ревизора»… Уж где-где, а с источниками питания мы никак не ожидали недоразумений. Само собой разумеется, немедленно была создана специальная комиссия с участием самых ответственных специалистов… Приступили к вскрытию батареи… Вот сняты полированные блестящие крышки. В руках монтажницы — штепсельный разъем и… несколько оторвавшихся из-за плохой пайки проводов. Слова, сказанные в тот момент, мало назвать горячими… Как сейчас вижу побелевшее от гнева лицо председателя Госкомиссии, его руку, постукивающую по столу обрывком злополучного кабеля, слышу и слова, произносимые сквозь зубы: «Ну, люди вы или не люди? Ну, можно ли найти имя этому безобразию?!».
22.
Проигрывая, как правило, по энергомассовому совершенству и надежности «негерметичным» КА-«автоматам» с уникальным специализированным оснащением, подобный подход позволял заметно уменьшить продолжительность и стоимость разработок (что представлялось принципиально важным на начальном этапе освоения космического пространства).
23.
Справедливости ради следует привести и иное мнение о коллизиях тех лет, выраженное, в частности, в мемуарах Б.Е.Чертока: «…Хрущев пригласил Королёва, Келдыша, Руднева и намекнул, что необходим космический подарок к сороковой годовщине Великой Октябрьской социалистической революции. Королёв возражал: осталось меньше месяца. Повторять такой же пуск нет никакого смысла, а разработать и изготовить другой спутник просто невозможно. Про себя Королёв справедливо опасался: этот предпраздничный подарок может закончиться очередной аварией… Но Хрущев был неумолим. Политический успех, который мы принесли, и еще один сенсационный космический пуск для него были важнее доводки межконтинентальной ядерной ракеты…».
24.
Задним числом Второй ИСЗ стали именовать «ПС-2», а Первый спутник, соответственно, «ПС-1».
25.
На взлете, при действии перегрузок, сердце Лайки сокращалось с интенсивностью более 260 тактов в минуту (в три раза выше нормы). Частота дыхания также выросла в 4–5 раз. Данные электрокардиограммы существенных нарушений не показали. В целом, вывод на орбиту Лайка перенесла удовлетворительно.
26.
Источники электропитания составляли львиную долю указанной массы, что было вызвано отсутствием в ту пору единых подходов к параметрам и качеству тока.
27.
Последние радиосигналы передатчика «Маяк» с питанием от СБ принимались на территории СССР утром 6 апреля 1960 г. на 10035 витке орбиты.
28.
В последующих главах, посвященных отдельным членам и кандидатам в «космический клуб», мы — где это целесообразно — будем рассматривать, помимо «первых шагов», и «вторые», и даже «третьи»…
29.
В прошлом один из разработчиков А-4 («Фау-2»), после переезда в США работал на фирме Convair; главный конструктор первой в мире криогенной ракетной ступени Centaur.
30.
Научно-экспериментальные работы пионера жидкостного ракетостроения США Роберта Годдарда (Roberth Goddard), проводившиеся с 1920 г., были малоизвестны и не оказали инициирующего влияния на масштабное развертывание национальных тематических разработок.
31.
Пуски V-2 с полигона Уайт-Сэндз (шт. Нью-Мексико) в рамках проекта «Гермес» (Hermes) начались 16 апреля 1946 г.
32.
ИСЗ предполагалось использовать для оценки плотности верхних слоев атмосферы с помощью наземных оптических и радиолокационных средств слежения.
33.
Полеты над Советским Союзом американских самолетов-разведчиков типа RB-45 и RB-47, а чуть позже и U-2 становились, по мере усиления противовоздушной обороны СССР, все более рискованными и не могли продлиться безнаказанно более нескольких лет.
34.
Формально было и третье предложение — от ВВС: запуск «тяжелого» спутника ~ 150 фунтов (68 кг) на ракете Atlas. Однако казалось маловероятным, что такой старт удастся провести до конца МГГ. Сравните: «букет» конкурирующих космических проектов в США и «монополия» Тихонравова — Королева на РН и спутник в СССР. Лучшее — враг хорошего?
35.
Если бы в конце разгона ракету «Фарсайд» направили горизонтально, то, в принципе, она могла бы стать искусственным спутником Земли.
36.
В то время — один из самых больших стратостатов в мире. Широкомасштабные работы по высотным аэростатам проводились в США в рамках секретных проектов «Гофер», «Грендсан», «Джинетрикс» и программы гражданского прикрытия «Моби Дик».
37.
К августу 1955 г. еще не летала.
38.
Разработчики запросили за десять ракет 9,7 млн $. Совет национальной безопасности выделил 20 млн $. А уже к апрелю 1957 г. стоимость программы достигла 110 млн $, превысив первоначальную смету более чем на порядок!
39.
Из имеющихся РЛС эксперты NRL отобрали три: одна находилась на предприятии-изготовителе — фирме Radio Corporation of America; вторая использовалась на базе ВМС в Пойнт-Мугу, шт. Калифорния; третьей владела Армия. Более совершенную РЛС обещали лишь к декабрю 1956 г. (и за нее требовалось заплатить 800 тыс $). В общем, «куда ни кинь — везде клин».
40.
По кончику штанги приемника воздушного давления на ГО.
41.
Разработаны по заказу Научно-исследовательской лаборатории связи Армии США фирмой Perkin-Elmer, имели светосилу 0,7 и массу 100 г (вместе с вспомогательными устройствами и корпусом из нержавеющей стали).
42.
Получила свое название 8 апреля 1952 г. в честь арсенала, «приютившего» головных разработчиков.
43.
Напомним, 25 июня 1950 г. началась война в Корее. 25 октября того же года в войну на стороне КНДР вступили «китайские народные добровольцы», которые 25 ноября — 18 декабря контратаковали войска ООН.
44.
Неуправляемая боевая ракета диаметром 70 мм класса «земля-воздух», разработанная в JPL.
45.
По образному выражению одного из очевидцев тех событий, эти четыре антенны на ИСЗ «торчали как мышиные усы».
46.
«Исследователь», «проводник» (англ.). Любопытно, что «официальное» название спутника родилось уже после запуска. Оно было предложено Ричардом Хиршем (Richard Hirsch) из Комиссии по космосу при Совете национальной безопасности.
47.
Серийные ракеты, снятые с боевого дежурства в Европе. Восстановлены фирмами Chrysler и TRWu оснащены новыми РДТТ второй и третьей ступеней, изготовленными фирмой LTV.
48.
После неудачи «Авангарда» в декабре 1957 г., которую очень болезненно переживали на Флоте, альтернативные проекты РН «вышли из тени».
49.
Существует и другая интерпретация, которая звучит просто как Станция по испытаниям вооружения ВМС, Чайна-Лейк (Naval Ordnance Test StatioN, ChIna LaKe).
50.
Rockair, от Rocket on Aircraft (ракета на самолете); концепция впервые предложена Германом Обертом (Hermann Oberth) в его классической работе Wege zur Raumschiffahrt (1929 г.).
51.
За форму и размеры разработчики называли его «пончиком».
52.
Проект Hi-Hoe («Высотная мотыга» — не правда ли, весьма красноречиво для миссии, призванной «пропалывать» поля неприятельских ИСЗ?
53.
Буквально — «счет», англ.
54.
Один из операторов, отвечавших за работу «определителя дальности полета ракеты», решил, что данный прибор испорчен, поскольку он вообще не указывал точки падения! Что касается причастных к проекту SCORE — их стали называть «клубом 88-ми» — то они решали задачу «конспиративного» уменьшения массы ракеты «без излишних согласований» как с фирмами-разработчиками, так и с военными. Например, за два дня до старта штатный «носовой конус» был заменен ими на облегченный с улучшенной аэродинамикой.
55.
Отметим, что летно-конструкторские испытания первой советской МБР Р-7 — в отличие от первой американской МБР Atlas — начались сразу же в полной комплектации.
Старый свет: поиск «третьего пути».
После потрясений Второй мировой войны страны Западной Европы «зализывали раны» и, по мере сил, пытались противодействовать демонтажу прежнего (колониального) порядка, который обеспечивал им благоденствие в недавнем прошлом.
…«Космическая гонка», внезапно возникнув и стремительно прогрессируя, волей-неволей заставила правительства главных держав Старого света определиться с «национальным космосом».
В ноябре 1958 г. Соединенные Штаты предложили иностранным ученым устанавливать их научную аппаратуру на борту американских спутников. И даже соглашались на запуск КА других стран своими ракетами — на определенных условиях и с ограничениями, разумеется. С точки зрения Белого дома, это сулило весомые политические дивиденды, позволяло быть в курсе новейших идей и разработок, а кроме всего прочего — держать в узде не слишком покладистых младших партнеров по «свободному миру».
Подобное зависимое положение для недавних мировых лидеров оказалось неприемлемым. «Владычица морей» Великобритания на излете своих имперских устремлений инициировала программу общеевропейской «космической» кооперации для формирования третьей (после СССР и США) «дороги на орбиту». Эту идею с воодушевлением приняли европейские научные круги, их молчаливо поддерживали военные и промышленность.
Несмотря на последующее самоустранение Англии от роли лидера (как представляется, не без влияния США), «общеевропейский флаг» оказался чрезвычайно удобным для политкорректного оформления научно-инженерных амбиций ведущих государств Старого света, в первую очередь, Франции и Германии.
«Вперед, Британия!
История создания английского космического носителя началась в 1955 г., когда Лондон решился на чрезвычайно дорогой и амбициозный проект тяжелой баллистической ракеты среднего радиуса действия Blue Streak[1], практически не имея опыта работ в этой области (если не считать трех запусков трофейных V-2 в рамках «Операции Backfire» сразу после окончания Второй мировой войны).
В качестве промежуточного этапа на пути к БРСД рассматривался «Черный рыцарь» (Black Knight) — первая крупная чисто английская баллистическая ракета на жидком топливе. Она была спроектирована Королевским авиационным исследовательским институтом RAE (Royal Aircraft Establishment, пригород Лондона — Фарнборо) специально для исследований движения в атмосфере боеголовок Blue Streak. Ракета оснащалась двигателем Gamma Мк.201 фирмы Bristol Siddley тягой около 7240 кгс на уровне моря, замененным в дальнейшем на модификацию Мк.301 тягой около 10900 кгс. ЖРД — четырехкамерный, с турбонасосной подачей компонентов топлива (окислитель — концентрированная перекись водорода[2], горючее — керосин).
Комбинация компонентов, примененная англичанами, по энергетике уступала лучшим высококипящим топливам (например, типа «гидразин + четырехокись азота»), но имела по сравнению с ними следующие преимущества:
— меньшую температуру горения, что повышало надежность двигателя;
— пониженное давление паров окислителя, что позволяло применять более легкие баки;
— увеличенную плотность, что давало возможность уменьшить объем топливных баков и тем самым дополнительно облегчить их;
— более высокое массовое отношение (примерно 8,2:1) окислителя к горючему в смеси, что позволяло снизить влияние нерасчетного расхода топлива на энергетические характеристики ЖРД;
— меньшая химическая агрессивность упрощала выбор материалов;
— газообразные продукты разложения окислителя использовались для вращения турбины ТНА.
Подготовка к пуску одноступенчатого варианта ракеты Black Knight (Фото из архива Николаса Хилла (www.spaceuk.org)).
Ракета управлялась гироскопическим автопилотом «постоянного курса» за счет отклонения камер сгорания в кардановых подвесах. Четыре стабилизатора служили для повышения аэродинамической устойчивости на начальном участке полета, снижая потребный угол отклонения камер ЖРД.
Пуски предполагалось проводить с испытательного полигона Вумера (Южная Австралия). Строительство полигона в пустыне, начатое в 1946 г., обошлось Великобритании и Австралии в 200 млн ф. ст.
Было осуществлено пять пусков Black Knight в одноступенчатом варианте. Для достижения расчетной скорости входа боеголовки в атмосферу предусматривалось дополнение ракеты второй ступенью на базе твердотопливного ускорителя Cuckoo («Кукушка») от высотной ракеты Skylark («Жаворонок»).
Вторая ступень монтировалась на «Черном рыцаре» в перевернутом положении, при этом боеголовка входила внутрь приборного отсека первой ступени. Отделение второй ступени (после прекращения работы ЖРД первой) происходило на восходящей ветви траектории, на высоте около 110 км. Ступень стабилизировалась вращением с частотой 150 об/мин посредством сопел в головном обтекателе, где располагался баллон со сжатым газом. Сопла, наклоненные «назад» под углом 45°, способствовали уводу второй ступени и предотвращению ее соударения с первой ступенью.
Схема двухступенчатой ракеты Black Knight: 1 — бак со сжатым газом системы отделения и закрутки второй ступени; 2 — РДТТ Cuckoo второй ступени; 3 — разрывные болты; 4 — макет головной части; 5 — переходник-обтекатель; 6 — отсек автопилота; 7 — бак горючего (керосин); 8 — межбаковый отсек; 9 — гаргрот, закрывающий кабели; 10 — детонатор системы аварийного прекращения полета; 11 — бак окислителя (перекись водорода); 12 — отсек маршевой двигательной установки; 13 — аэродинамические стабилизаторы; 14 — блок передатчика; 15 — лампы-трассеры.
Обычно при экспериментальных пусках вторая ступень снижалась свободно до высоты 112 км, и здесь включался ее двигатель. На высоте 65 км боеголовка отделялась от пустой ступени и падала в заданном районе, удаленном на ~100 км от стартовой площадки.
Записывающее устройство, установленное в боеголовке, регистрировало на магнитной ленте ее поведение вплоть до соприкосновения с землей. Лента заключалась в спасаемую бронированную кассету, способную пережить жесткое приземление.
Поскольку рассеивание точек падения при управлении от автопилота «постоянного курса» оказалось чрезмерным, была разработана простая радиокомандная система управления, обеспечивающая движение Black Knignt по радиолучу, направленному по заданному азимуту и под нужным углом возвышения. Никакого сигнала об отсечке ЖРД радиокомандная система не подавала, и топливо в баках ракеты вырабатывалось полностью.
Метод, примененный англичанами на Black Knight, ограничил максимальную высоту подъема ракеты -600 км, снизив тем самым разброс точек падения и одновременно обеспечив получение высокой (более 4,5 км/с) скорости входа боеголовок в атмосферу.
Программа Black Knight оказалась для своего времени достаточно удачной (15 из 22 полетов двухступенчатой ракеты были полностью успешными, остальные — частично успешными или аварийными). Учитывая, что каждый запуск стоил «всего» 41 тыс ф. ст., ее можно считать вполне многообещающим дебютом британских ракетчиков.
Следует отметить, что при пусках Black Knight исследовались — часто совместно с США — возможности сопровождения боеголовок ракет при движении их в атмосфере. Важнейшим результатом экспериментов стало то, что в Лондоне решили не разрабатывать собственную систему противоракетной обороны (ПРО), но предпринять меры, чтобы британские боеголовки были трудной задачей для перехвата.
На стартовом столе — двухступенчатый вариант ракеты Black Knight (Фото из архива Николаса Хилла (www.spaceuk.org)).
БРСД Blue Streak проектировалась фирмами DeHavilland, Rolls-Royce и Sperry с широким заимствованием опыта компании General Dynamics (США) по МБР Atlas. Ракета имела «атласовский» диаметр 3,05 м и длину (без боеголовки) 18,75 м. Бак окислителя вмещал 60,8 т жидкого кислорода; расположенный ниже бак горючего — 26,3 т керосина. Топливный отсек разделялся совмещенным днищем. Бак окислителя наддувался за счет газификации жидкого кислорода, а бак горючего — жидкого азота. Жесткость баков, изготовленных из тонкой (менее 0,5 мм) нержавеющей стали, обеспечивалась за счет повышенного внутреннего давления.
Упрощенный вариант двигателя S-3 американской БРСД Jupiter лег в основу британского варианта RZ-2, освоенного фирмой Rolls-Royce по лицензии Rocketdyne. Два RZ-2 монтировались в кардановом подвесе и могли отклоняться в двух плоскостях, обеспечивая управление ракетой по трем осям.
Одной из слабых сторон Blue Streak как системы оружия была ее громоздкость, другой — использование криогенного компонента (жидкого кислорода). Расчеты показывали, что даже при шахтном базировании БРСД потенциальный противник будет в состоянии подавить все английские пусковые установки путем массированной ядерной атаки. В этой связи вооруженные силы Великобритании отказались от применения Blue Streak и переориентировались на американскую ракету морского базирования Polaris.
Когда Blue Streak была отменена как оружие (13 апреля 1960 г.), министр обороны Гарольд Уоткинсон (Harold Watkinson) объявил, что «проект будет продолжен как ракета-носитель спутников».
К тому времени на Blue Streak уже было израсходовано 65 млн ф. ст., и дальнейшая разработка ее «гражданского» варианта требовала примерно такой же суммы. На создание научной аппаратуры для ИСЗ нужно было затратить еще ~20 млн ф. ст. Кроме того, требовалось содержать Центр испытаний ракетных двигателей в Спейдедаме (Камберленд); обеспечить переброску ракет, оборудования и специалистов в Австралию; расширить ракетный полигон Вумера для вывода ИСЗ на полярные орбиты и запуска их в северо-восточном направлении вместо запуска по существующему коридору в северо-западном направлении. Необходимо было также построить новые станции сопровождения и приема телеметрии в Австралии и странах Содружества.
Blue Streak (Рисунок Flight International).
Увы, для стремительно дряхлеющей Британской империи цена «престижного космоса» выглядела чрезмерной.
Популярной становится линия Казначейства, сформулированная следующим образом:
◆ Необходимо, чтобы РН имела ценность с точки зрения британских ученых и принесла технический опыт выведения спутников на орбиту и управления ими, а также дала возможность проверить спутники и их компоненты в среде реального космоса. Но какие спутники Великобритания собирается запускать? И для чего? Не принято никаких решений по программе разработки спутника связи. Не заявлено никаких требований к спутникам со стороны британских военных. Это говорит о том, что никаких подобных потребностей не возникло…
◆ Предполагается, что обладание небольшой РН даст нам возможность «лучше конкурировать за контракты на космические проекты». Однако перспективы экспорта в космической области представляются весьма незначительными…
Запомним эту фразу. Она дорого будет стоить Великобритании: из потенциального лидера мировой космической экспансии страна сползет в аутсайдеры «ракетно-космического клуба»…
Стремление «оживить» вялую национальную политику в космической области стимулировало поиск новых идей, в которых прямое государственное участие и управление могло бы замещаться чем-то альтернативным. В этой связи показательна активная деятельность «Британского межпланетного общества» BIS (British Interplanetary Society), к тому времени уже проявившего себя дееспособной в научно-техническом плане и уважаемой в мире организацией.
Более чем за год до прекращения работ по Blue Streak общество развернуло кампанию за осуществление разработки ракеты-носителя спутников параллельно с созданием боевых баллистических ракет. Против BIS в декабре 1959 г. выступил консультативный Совет по научной политике, объявив «нерациональным» принятие Великобританией собственной программы космических исследований. Совет предложил, чтобы английские ученые «участвовали в космических исследованиях в порядке международного сотрудничества». Он одобрил соглашение, по которому национальные университеты привлекались к разработке проекта англо-американского ИСЗ. Совет полагал, что запланированные на эти цели ассигнования (100–200 тыс ф. ст.) «вполне достаточны, если их сравнивать с другими исследовательскими работами такой же значимости».
Отметим: из 14 виднейших ученых Совета ни один не был авторитетом в области космонавтики. Поэтому не приходится удивляться, что Совет игнорировал важные выводы BIS, а именно: перспективность практического применения спутников для дальней связи, метеорологии, навигации и дистанционного зондирования Земли.
Компоновка двигательного отсека ракеты Blue Streak.
В связи с отсутствием официальных правительственных рекомендаций и неблагоприятным докладом Совета по научной политике BIS создает собственный комитет для разработки программы исследований космического пространства, организует и проводит симпозиум стран Британского содружества наций по проблемам космических полетов (август 1959 г.).
24 февраля 1960 г. представители BIS вручили премьер-министру Великобритании меморандум, требующий от правительства принятия развернутой программы космических исследований. В документе указывалось, что освоение космического пространства не ограничивается проведением лишь научных экспериментов; оно имеет большую практическую ценность и, несомненно, отразится на состоянии и перспективах развития высокотехнологичных отраслей промышленности. Подчеркивалось, что если Англия не примет участия в освоении космического пространства, она окажется позади США и СССР в новых прикладных областях науки и техники, таких как электроника, автоматическая навигация, дальняя связь, криогеника, гиперзвуковая авиация, ракетостроение и пр.
В то же время было ясно, что Англия не может соревноваться с США и СССР по масштабам развертывания работ и материальным затратам. Исходя из этих предпосылок, общество (BIS) предложило правительству изыскать «политические» (!) способы сотрудничества со странами Британского содружества наций и европейскими государствами, совместно с которыми можно было бы создать «третью силу» в деле освоения космического пространства.
Сравнение одноступенчатой высотной ракеты Black Knight с предлагаемым спутниковым носителем Black Prince.
В меморандуме BIS был представлен следующий перечень мероприятий, который мог бы стать основой перспективной пятилетней программы:
1. Создание (на базе модифицированных ракет Blue Streak и Black night) РН для запуска ИСЗ. Кроме этого, необходимо расширить бъем проводимых работ по слежению за спутниками и анализу параметров их орбит, а также приложить усилия по использованию американских ракет Scout для запуска ИСЗ с научной аппаратурой английских ученых.
2. Разработка более мощных и совершенных второй и третьей ступеней для модифицированной ракеты Blue Streak, что позволило бы, по крайней мере, удвоить полезный груз носителя.
3. Всестороннее изучение возможности создания спутников связи, включая рассмотрение перспектив их гражданского и военного применения.
4. Разработка аппаратуры и методов осуществления связи, телеметрии и навигации в космическом пространстве и обеспечение этой аппаратуры автономными источниками энергии.
5. Осуществление постепенно расширяющейся программы разработки гиперзвуковых аппаратов для решения проблемы управляемого входа КА в атмосферу.
6. Выполнение небольшой программы по вопросам космической медицины.
7. Осуществление долгосрочной (5-10 лет) программы научно-исследовательских работ в области создания новых ракетных двигателей — ядерных и электрических (ионных и плазменных), а также изучение возможности создания синтетических метастабильных топлив высокой энергии, основанных на использовании атомарных частиц, и т. п.
Исходя из предположения, что работы над ракетой Blue Streak будут продолжены с целью применения ее в качестве первой ступени РН, было предложено довести ежегодные ассигнования на эти работы в течение последующих пяти лет до 20 млн ф. ст. и сохранить такой уровень расходов в дальнейшем[3].
Согласно оценке, проведенной институтом RAE, носитель на базе ракет Blue Streak (первая ступень) и Black Knight (верхние ступени) мог вывести:
— ПГ массой 800 кг на круговую орбиту высотой 550 км;
— 180–225 кг на эллиптическую орбиту с апогеем 12,9 тыс км и перигеем 480 км;
— 90 кг на вытянутую эллиптическую орбиту с апогеем 160 тыс км и перигеем 480 км.
Для выполнения намеченной программы требовалось привлечь дополнительно около 1000 дипломированных научных работников и инженеров, а также вспомогательный технический персонал.
Совместная европейская программа изучения космического пространства могла бы включать следующие мероприятия:
1. Проведение координированных научно-исследовательских работ в соответствующих учреждениях стран-участниц.
2. Изготовление отдельных узлов и сборку ракет на различных европейских заводах.
3. Совместное использование испытательных центров и ракетных полигонов.
4. Разделение общей программы на небольшое количество самостоятельных проектов, каждый из которых закреплялся за одним из европейских исследовательских центров, причем в эти национальные центры привлекались бы ученые других стран.
5. Создание Совета директоров из представителей всех участвующих стран, а также исследовательских центров, осуществляющих разработку отдельных проектов, для руководства (координации) совместной европейской программой.
Правительство с вниманием отнеслось к предложениям BIS, поскольку такой подход открывал для Великобритании независимый путь в космос во главе коалиции государств — излюбленный прием английской политики на протяжении веков! Министр авиации Питер Торникрофт (Peter Thorneycroft) посетил Австралию, Канаду и Францию, и уже в ноябре 1960 г. группа французских технических специалистов прибыла в Англию для ознакомления с состоянием работ по Blue Streak. Спустя месяц, во время обсуждения в парламенте вопроса о спутниках связи, парламентский секретарь министра авиации заявил, что «если Франция присоединится к Великобритании в создании РН, то конструкция второй ступени будет базироваться на французских опытных разработках».
В январе 1961 г. министр авиации побывал в ФРГ, Норвегии, Дании, Италии, Швейцарии и Швеции, а технические представители 14 европейских стран были приглашены в Англию для ознакомления с производством и испытаниями ракет Blue Streak.
Схема ракеты-носителя Black Arrow: 1 — спутник Prospero; 2 — головной обтекатель; 3 — РДТТ 3-й ступени; 4, 9 — баки горючего (керосин); 5, 10 — межбаковые приборные отсеки; 6,11— баки окислителя (перекись водорода); 7 — ЖРД Gamma-2 второй ступени; 8 — межступенчатый переходник; 12 — ЖРД Gamma-8 первой ступени.
В то же время традиционная склонность англичан «не класть все яйца в одну корзину», а также опасение заметно отстать от новых лидеров (вперед уже активно пробивалась «вечная соперница» Франция) сподвигли Лондон предпринять попытку «самостоятельного» прорыва в космос в рамках проекта Black Arrow («Черная стрела»).
Первые проработки легкой спутниковой РН были проведены после завершения эскизного проектирования Black Knight. Выяснилось, что оснащение этой ракеты твердотопливными верхними ступенями, в принципе, позволяло вывести на орбиту ИСЗ массой 17–25 кг. Однако в начале 1960-х годов столь малая масса ПГ никого уже не устраивала. Начался поиск путей увеличения грузоподъемности носителя, основанный преимущественно на переборе вариантов имеющихся и перспективных ступеней и двигателей. Кроме того, «на бумаге» (а иногда, и на стенде) проверялась «экзотика» типа ЖРД на кислородно-водородном топливе.
Проработки выявили, что исходная ракета слишком мала, чтобы стать основой спутникового носителя. Были выпущены новые тактико-технические условия, предусматривающие возможность изменения конструкции Black Knight. Так появился проект Black Arrow с восьмикамерной модификацией ЖРД Gamma на 1-й ступени и двухкамерной — на 2-й. 3-ю — твердотопливную — ступень планировалось создать «с чистого листа», поскольку характеристики исходного ускорителя Cuckoo были недостаточны.
Несмотря на то, что проект в целом смотрелся неплохо, он постоянно подвергался критике: по своим характеристикам английская РН лишь приближалась к более простому и дешевому американскому «Скауту», который к тому времени уже интенсивно использовался, в том числе и в международных программах.
И еще: к моменту завершения эскизного проектирования Black Arrow характер и назначение ее ПГ не были четко обозначены. В этой связи проект РН развивался весьма причудливо: например, решено было делать первую ступень диаметром ровно 2 м, что кажется странным, поскольку все остальные размеры оставались «чисто британскими». Из-за этого Black Arrow приобрела «приземистый» вид[4].
Интересный нюанс: «добро» на разработку Black Arrow давала консервативная партия в конце своего срока правления. Лейбористская партия, пришедшая ей на смену, намеревалась отменить или, по крайней мере, критически пересмотреть реестр дорогостоящих правительственных программ. Black Arrow выглядела «жертвенной овечкой», но… была сохранена. Лейбористы опасались, что решение отменить этот проект будет выглядеть как «сожжение одного из немногих оставшихся технологических мостов в будущее».
Ракета Black Arrow на стенде в Хай-Дауне (Фото из архива Николаса Хилла (www.spaceuk.org)).
Трехступенчатая РН Black Arrow была разработана фирмой Bristol Siddley Engines совместно с компанией Westland Aircraft. За разработку первой и второй ступеней отвечала фирма Saunders Roe, за третью — Bristol Aerojet, за ЖРД первой и второй ступеней — Bristol Siddley.
Согласно проекту, носитель имел длину 13,2 м, максимальный диаметр 2 м и стартовую массу 18,1 т. Ракета могла вывести спутник массой порядка 100 кг на полярную околоземную орбиту высотой 300 морских миль (556 км).
Топливо первой и второй ступеней — высококонцентрированная перекись водорода и керосин, соотношение окислитель/горючее 8,2:1.
На третьей ступени использовался специально разработанный РДТТ Waxwing на смесевом топливе, обладавший весьма высокими (для своего времени) удельными характеристиками. Двигатель и ПГ устанавливались на «вращающемся столе» второй ступени.
РН Black Arrow управлялась автопилотом, который удерживал ракету на программной траектории.
После того, как в первой ступени заканчивалось топливо, она отделялась с помощью специализированных РДТТ.
Головной обтекатель, закрывающий спутник, сбрасывался вскоре после включения ЖРД второй ступени.
По окончании работы ЖРД второй ступени ракета продолжала баллистический полет к апогею траектории. При этом программная ориентация поддерживалась газореактивной системой управления второй ступени. Как только носитель достигал апогея, включался «вращающийся стол». Затем срабатывали фиксаторы и пружины разделения, отпуская третью ступень в свободный полет. Задействовался РДТТ, и полезный груз разгонялся до орбитальной скорости.
Запускалась РН с модернизированного стартового стола ракеты Black Knight (Вумера).
В рамках программы Black Arrow разрабатывались спутники нескольких серий.
Первыми предполагалось запускать телеметрические контейнеры серии В, предназначенные в основном для контроля работы бортовых систем экспериментальных РН.
Поскольку при полете Black Arrow с аппаратом В1 включались двигатели только первых двух ступеней РН, на орбиту он не выводился.
Контейнер В2 (орбитальный, массой 85–90 кг) дополнительно был снабжен радиомаяком и источниками питания, рассчитанными на месяц работы. Предусматривалось также изготовление запасного аппарата ВЗ, аналогичного В2. Вместе с В2 и ВЗ при запусках экспериментальных РН — миссии R1 (конец 1969 г.) и R2 (начало 1970 г.) — на орбиту 350х1874 км и наклонением 80,4° предполагалось вывести опытные НАУЧНЫЕ спутники Х1 и Х2. Расчетная продолжительность работы этих ИСЗ — 3 года. По эволюции их орбит, в частности, надеялись выяснить причины сезонных изменений плотности атмосферы с максимумами в апреле и октябре и минимумами в январе и июле.
Экспериментальный КА ORBA (телеметрический контейнер ВЗ плюс спутник Х2) под головным обтекателем Black Arrow R2 (Фото из архива Николаса Хилла (www.spaceuk.org).
Спутник Х1 (Х2) представлял собой тонкостенную сферу из алюминиевого сплава диаметром 0,76 м и массой 12,7 кг. Корпус собирался из двух полусферических оболочек, разделенных изолирующим кольцом. Поверхность оболочек отполирована, а на Х1 еще и покрывалась слоем золота толщиной 5 мкм, который осаждался на никелевую подложку. С целью поддержания заданного температурного режима на наружную поверхность нанесены белые пятна. В центре масс размещен контейнер с радиомаяком (136 Мгц, 50 мВт) системы траекторных измерений и батареи питания. Антенной служит оболочка аппарата.
По мере отработки РН Black Arrow предполагалось начать запуски более сложных ИСЗ для проведения технологических экспериментов и научных исследований.
Спутник ХЗ, запуск которого намечался на 1971 г., планировалось вывести на близкую к полярной орбиту 480х1600 км. Расчетная масса спутника — 72 кг, высота корпуса 0,71 м, наибольший поперечный размер 1,14 м. Корпус имел форму 24-гранной призмы. На орбите ИСЗ должен был стабилизироваться вращением (последняя ступень РН вместе со спутником раскручивалась до 960 об/мин, затем скорость вращения ИСЗ снижалась до 200 об/мин).
На спутнике ХЗ планировалось разместить:
— экранированные солнечные элементы (в т. ч. облегченные кремниевые и гибридные тонко— и толстопленочные);
— перспективные теплоотражающие краски и покрытия;
— приборы для измерения концентрации протонов и электронов по траектории полета ИСЗ;
— датчики метеорных частиц размером до 0,1 мм.
На спутнике ХЧ предполагалось установить оборудование для контроля работы системы ориентации и стабилизации РН Black Arrow. ИСЗ Х5 (обозначаемый также как S1) планировалось оснастить электро-ракетным двигателем тягой 1,5 гс.
Сокращенная программа ЛКИ (три старта вместо пяти) предполагала, что попытка орбитального запуска должна быть предпринята уже во втором полете. Первый носитель — Black Arrow R0 — включал две реальные нижние ступени и макетную третью. Основной целью миссии R0 было испытание ЖРД Gamma-8 и Gamma-2 первой и второй ступеней соответственно. В следующем запуске (Black Arrow R1) предполагалось испытать третью ступень носителя и двигатель Waxwing, а также «попутно» вывести на орбиту «упрощенный» спутник Х1. Black Arrow R2 должна была стать первой ракетой, несущей полностью «рабочий» научно-исследовательский ИСЗ.
Проверка ступеней РН Black Arrow перед отправкой в Австралию.
Запуск R0 планировался на январь 1968 г. Однако при стендовых испытаниях ЖРД Gamma возникли неполадки, требующие переделки двигателей. Проблемы были решены лишь к апрелю 1969 г., в результате носитель и стартовая команда прибыли в Австралию только к лету. 28 июня 1969 г. оглушительный рев двигателя Gamma-8 возвестил о том, что «Черная стрела» R0 поднялась в воздух. РН ушла по «короткой» северо-западной трассе, по которой ранее пускали высотные ракеты Black Knight.
Через несколько секунд траектория R0 стала скручиваться в спираль. Нерасчетные колебания привели к тому, что створки головного обтекателя и макетная третья ступень самопроизвольно отделились. На высоте 8 км поврежденный носитель опрокинулся и начал кувыркаться. Когда ракета снизилась ниже 3 км, офицер безопасности полигона разрушил R0: по его сигналу двуокись марганца была введена в баки перекиси водорода, и РН взорвалась.
Телеметрические данные с R0 позволили установить, что одна из четырех пар камер сгорания ЖРД Gamma-8 неоднократно перекладывалась взад-вперед во всем диапазоне перемещений. Это почти наверняка было вызвано потерей сигнала обратной связи — вероятно, в результате обрыва провода. Объединенный эффект этого ненормального перемещения и попыток его компенсации тремя другими парами камер привел к спиралеобразному движению РН после запуска.
4 марта 1970 г. ракета R1, которую ранее планировали для первой попытки орбитального запуска, но переделали под суборбитальную спецификацию, была запущена для повторения полетной программы R0. На сей раз носитель сработал превосходно. Запуску R2 с тремя «живыми» ступенями и спутником X2 был дан «зеленый свет».
Подготовка к старту ракеты-носителя Black Arrow R2 (Фото с сайта www.capcomespace.net).
У Великобритании наконец-то появился шанс стать шестой державой — после Советского Союза, Соединенных Штатов, Франции, Японии и Китая — достигшей орбиты собственными средствами.
РН взлетела 2 сентября 1970 г. и начала разгон по «длинной» северо-восточной трассе. Вдруг, после отделения первой ступени, двигатель Gamma-2 второй ступени стал терять тягу. Он выключился почти на 30 сек раньше, чем требовалось. Несмотря на это, R2 продолжила «выход на орбиту». Отделение второй ступени прошло без осложнений, и двигатель третьей ступени Waxwing запустился успешно. Однако этот РДТТ, сработавший безупречно, не смог компенсировать недостаток скорости.
Запуск Black Arrow R3 со спутником Prospero (Фото с сайта www.capcomespace.net).
Когда спутник Х2 отделился от третьей ступени, он двигался слишком медленно, чтобы остаться на орбите. Гравитация Земли победила — экспериментальный КА ORBA (телеметрический контейнер В-3 плюс спутник X2) упал в океан.
Комиссия, расследовавшая аварию РН в этой миссии, вскрыла дефект в системе наддува топливных баков второй ступени. В результате утечки, сжатого азота не хватило, чтобы поддержать давление в баке перекиси водорода, и ее расход упал. В свою очередь, это привело к уменьшению тяги ЖРД и, в конечном счете, к его преждевременному выключению.
Политики кабинета Ее Величества посчитали, что проект Black Arrow бесперспективен, и закрыли его в июле 1971 г., разрешив провести еще один — последний — запуск.
28 октября 1971 г. стартовала миссия R3 — Black Arrow с ИСЗ Prospero[5]. Аппарат массой 160 фунтов (72,5 кг), стабилизируемый вращением и напоминающий по форме тыкву, был оснащен полным комплектом оборудования, предусмотренным для спутника ХЗ. Он успешно[6] вышел на околополярную орбиту с параметрами:
— высота в перигее — 537 км;
— высота в апогее — 1593 км;
— наклонение — 82°;
— период обращения — 109 мин.
Спутник-дублер ХЗ в «Музее Науки» (Лондон). Его предполагалось задействовать, если в оригинале будут обнаружены дефекты (Фото И.Афанасьева).
Первая удачная попытка запуска собственного спутника своими силами была, одновременно, последним стартом национальной РН: легкий трехступенчатый носитель, разработанный на базе исследовательской ракеты Black Knight, «победил и умер»…
Несмотря на перспективы роста, заложенные в проекте РН (а первоначальными планами предусматривалось последовательное наращивание возможностей носителя, см. табл.), «срок жизни» (если можно так выразиться) Black Arrow был слишком короток, чтобы судить о ее реальной эффективности. Можно лишь констатировать, что проект состоялся «в железе» и, помимо завоевания политического престижа, вполне мог послужить англичанам инструментом независимой космической программы.
Гримаса судьбы: отказ от Black Arrow и пассивность в рамках «общеевропейского космоса» привели к тому, что для Великобритании сбылось мрачное предсказание — уход из ракетно-космического бизнеса «на время» вытолкнул страну из состава лидеров, похоже, навсегда…
P.S. В письме, датированном июлем 1957 г. (за три месяца до начала «космической эры»), в номере четвертом журнала Spaceflight Морис Олвард (Maurice Allward) пророчески отметил: «Нация с эффективной межконтинентальной баллистической ракетой закладывает первый камень в лестницу на пути к планетам. Столь большому призу нельзя позволить ускользнуть сквозь британские пальцы. Если это случится, неблагоприятные последствия будут преследовать нас не в течение лет, но на протяжении столетий».
Исторический раритет — первая ступень ракеты Black Arrow, которая вывела на орбиту первый английский ИСЗ Prospero.
«Драгоценные камни» Французской Республики.
Факторы «холодной войны» (с одной стороны) и политика «обороны по всем азимутам» (с другой стороны) решающим образом повлияли на формирование национальных ядерных сил и аэрокосмической индустрии Франции, независимых от США и НАТО.
15 марта 1949 г. Комитет по вооружениям DMA (Delegation Ministerielle de 1'Armement) кабинета министров инициировал ракетную программу. Главный подрядчик — поддерживаемая армией Лаборатория баллистических и аэродинамических исследований LRBA (Laboratoire Recherches Balistiques и Aerodynamiques), расположенная в г. Верноне, близ Парижа — изучив опыт немецкой V-2, разработала неуправляемую ракету на жидком топливе Veronique (от VERnonelectrONIQUE)[7]. Цель: помощь LRBA в освоении германского опыта проектирования больших баллистических ракет.). Первый образец совершил полет 2 августа 1950 г., достигнув «невероятной» высоты — 3 (!) метра.
Лиха беда начало! Упорное выполнение программы позволило достичь следующих результатов:
Veronique R: 8 запусков (август 1950 г. — февраль 1952 г.). Базовый проект. Максимальная высота подъема (1800 м) достигнута при четвертом пуске.
Veronique N: 11 запусков (1952–1953 гг.). Более тяжелый вариант. Дизельное горючее заменено фурфуриловым спиртом. Максимальная высота полета — 60 км после 31 сек работы двигателя тягой 4 тс.
Veronique NA: 4 запуска (1954 г.). Несла 60 кг ПГ на максимальную высоту 135 км при 45 сек работы двигателя.
Veronique AGI (от Annee Geophysique Internationale — Международный геофизический год): первая стандартная версия, примененная в 50 запусках (1957–1964 гг.). Упрочненные стальные баки, модифицированная камера сгорания и скипидар, заменивший фурфуриловый спирт в качестве горючего, позволили повысить совершенство ракеты.
Veronique 61 (программа 1961 г.): имела на 50 % лучшие характеристики, чем вариант AGI. 13 запусков (1964–1967 гг.), включая удлиненный вариант Veronique 61M.
Vesta (первоначально Super Veronique): характеристики выросли еще более. 10 запусков (1964–1970 гг.).
Ракеты производились для LRBA фирмой Sud-Aviation.
Подготовка к запуску высотной ракеты Veronique (Фото с сайта www.capcomespace.net).
*Начальную устойчивость обеспечивали четыре троса, намотанные на барабан ПУ и прикрепленные к кронштейнам у основания стабилизаторов ракеты. Кронштейны сбрасывались на высоте 55 м, когда ракета, набрав скорость, становилась аэродинамически устойчивой.
Первые старты в космос «взволновали воображение галлов».
В октябре 1959 г. организуется Общество по созданию баллистических снарядов SEREB (Societe I'Etude et la Realisation d'Engins Balistiques). Для Франции начинается эпоха выбора «базовых методов» в части конструктивно-компоновочных схем ракет, систем управления, двигателей, конструкционных материалов…
Первый проект французского космического носителя был выпущен в мае 1960 г. и предполагал запуск трехступенчатой ракеты (одна жидкостная и две твердотопливные ступени) с полезным грузом 25 кг. К 1961 г. масса ПГ была повышена до 50 кг для орбиты 300 км; запуск планировалось осуществить в середине 1964 г. Основой проектных решений явилось наличие крупных ракет с ЖРД «Изумруд» (Emeraude) и «Сапфир» (Saphir), при этом «соразмерные» твердотопливные ракеты должны были формировать верхние ступени РН.
Ракета Emeraude была разработана в 1960 г. как укрупненная модификация ракеты Vesta. Компоненты долгохранимого самовоспламеняюшегося топлива — белая дымящая азотная кислота и скипидар — вытеснялись в двигатель Vexin[8] тягой 28,5 тс газами твердотопливного газогенератора, охлаждаемыми водой перед подачей в топливные баки.
Старт ракеты «Изумруд» (Фото CNES).
Данные компоненты топлива уступали по энергетике азотному тетроксиду с несимметричным диметилгидразином, но представлялись французским инженерам лучше отработанными и более дешевыми. Газогенератор также был введен для экономии: его масса и стоимость при равной газовой производительности с баллонной системой (работающей, например, на гелии) были ниже. Управление вектором тяги — отклонением камеры ЖРД по двум осям плюс аэродинамическими рулями. Эти конструктивно-компоновочные особенности стали характерными и для последующих проектов французских ЖРД и РН.
Следует отметить, что к 1961 г. национальный Научно-исследовательский авиационный институт ONERA (Office National d'Etudes et des Recherches Aeronautiques) осуществил около 300 пусков высотных ракет в рамках программ исследования верхних слоев атмосферы и создания боевых ракет. Так, многоступенчатая твердотопливная ракета Antares, предназначенная для отработки теплозащиты боеголовок, могла с ПГ около 100 кг развить скорость М=7 и достичь высоты порядка 150 км. С 1959 по 1961 г. было запущено 12 ракет этого типа. Другая многоступенчатая ракета с РДТТ — Baranis — развивала скорость М=12 и могла поднять ПГ массой 30 кг на высоту 1200 км, 60 кг — на высоту 945 км и 100 кг — на высоту 750 км.
Наработки по РДТТ легли в основу «Топаза» (Topaze VE. 111[9]) — первой в стране экспериментальной УПРАВЛЯЕМОЙ ракеты, выпущенной малой серией. «Топаз» играл роль «летающей модели» первой ступени перспективной французской БРСД. В частности, в марте 1962 г. был проведен запуск двух двухступенчатых ракет «Агат» (Agate VE. 211). Используя в качестве первой ступени «Топаз», «Агат» мог поднимать макет боеголовки на высоту около 70 км и возвращать его на землю с помощью парашюта.
Ракета «Топаз» перед пуском (Фото CNES).
Лидер страны генерал Шарль де Голль (Charles de Gaule), проводя последовательную линию на повышение международного авторитета и оборонной мощи Франции, всемерно поощрял национальные ракетные разработки[10]. В этой связи отметим: несмотря на прогресс в вопросе об использовании ракеты Blue Streak в качестве первой ступени европейской РН, Франция (SEREB) интенсивно осуществляла собственные исследования ракет большой дальности. Именно эти наработки и послужили основой для французского «рывка в космос».
Наконец, Emeraude VE. 121 в соединении с ракетой Topaze VE. 111 в качестве второй ступени образовывали ракету Saphir VE. 231.
В ходе последующих разработок SERE В предложил два новых варианта РН, способных вывести на номинальную орбиту высотой 360 км ИСЗ массой 80 и 100 кг при запусках в 1965 и 1966 гг. соответственно. Таким образом появился проект экспериментального носителя «Алмаз A» (Diamant А). При этом Национальный центр космических исследований CNES (Centre National d'Etudes Spatiales) взял на себя финансирование работ по преобразованию «Сапфира» VE.231 в космическую РН.
Технологическая капсула А-1 перед установкой в носовую часть ракеты Diamant А (Фото CNES).
Были разработаны новый отсек оборудования (фирма MATRA), третья ступень (Nord-Aviation) и головной обтекатель, под которым размещалась т. н. «технологическая капсула» А-1 (предназначена для контроля работы систем носителя во время выхода на орбиту).
Новую третью ступень Р.6 (со стеклопластиковым корпусом) испытали в полете на специальном ускорителе «Рубин» (Rubis VE.210), созданном на базе ракеты Agate (РДТТ массой 1900 кг, тягой 22 тс в течение 27 сек). На «Рубине» отработали также сброс обтекателя, закрутку до 300 об/мин и разделение ступеней.
18 декабря 1961 г. правительство дает «зеленый свет» проекту Diamant А. Разработкой руководит SEREB, в качестве субподрядчиков привлечены гиганты французской аэрокосмической индустрии LRBA, SNECMA, Sud-Aviation, Nord-Aviation, MATRA, SEPR, ONERA, Управление порохов, SAGEM, SFENA, SAT, ASir Equipement и др.
Отработка «Алмаза» начинается с испытаний модифицированного «Топаза». РДТТ ступени снаряжают зарядом нового твердого топлива Isolane массой 1500 кг. Полеты «Топаза» в качестве второй ступени проходят без серьезных затруднений. А вот жидкостная первая ступень («Изумруд») «капризничает»: ее тесты сопровождаются авариями и взрывами в полете. Всего с начала программы космической РН было запущено 12 «Агатов», девять «Топазов» и два «Рубина». Из пяти полетов «Изумруда» три оказались аварийными[11].
На этом фоне король «драгоценных камней» Французской республики — «Алмаз» — готовился к своему первому старту с полигона Хаммагир.
Французский ракетный испытательный центр Хаммагир (Hammaguir) был организован 24 апреля 1947 г. в пустыне Сахара на военной базе Колон-Бешар (Colomb-Bechar), Алжир. Он использовался для испытаний тактических ракет классов «земля-земля», «воздух— земля», «земля-воздух», а также для запуска исследовательских ракет и РН Diamant. Были проложены две полетные трассы: западная длиной около 480 км и юго-восточная длиной 2900 км.
Основные сооружения комплекса — башня обслуживания, вспомогательная башня и стартовый стол, а также центр управления запуском.
При сборке и предстартовой подготовке РН задействовалась башня обслуживания, передвигавшаяся по рельсам. На ней располагался мостовой кран, шесть рабочих площадок (3,5 х 6,5 м) и два вспомогательных подъемника.
Вспомогательная башня, сооруженная непосредственно у стартового стола, имела пять этажей (первый этаж — подземный), на которых размещалось оборудование для предстартовой подготовки РН, подвода питания и регистрации данных.
Для слежения за полетом ракет, а также приема от них телеметрической информации на полигоне было установлено оптическое и радиооборудование. На больших расстояниях применялись радиолокаторы «Аквитания» и TPL; их максимальная дальность действия достигала 2300 и 3200 км соответственно.
Точные траекторные измерения орбит спутников обеспечивались системой COTAR2, включавшей двухантенный интерферометр. Дальность действия системы ~ 2000 км.
Телеметрическую информацию со спутников принимала специализированная станция «Аякс».
26 ноября 1965 г. первая РН Diamant А стартовала из Хаммагира с первым французским спутником А-1 на борту. Основная цель запуска — испытания ракеты. Через 93 сек после старта ЖРД первой ступени закончил работу. В этот момент ракета находилась на высоте 43 км, скорость ее полета составляла 1,7 км/сек. Еще через 2 сек первая ступень отделилась (с помощью 12 тормозных «пороховиков» на передней юбке), и включился РДТТ второй ступени. Он проработал 44 сек; РН поднялась на высоту 166 км, угол тангажа составил 42,7°.
Стартовый комплекс РН Diamant на космодроме Хаммагир: 1 — центр управления; 2 — вспомогательная кабель-заправочная мачта; 3 — стартовый стол; 4 — РН Diamant A; 5 — подвижная башня обслуживания; 6 — электроподстанция; 7 — линии связи; 8 — пожарный резервуар; 9 — трейлер с азотной кислотой; 10 — хранилище спецодежды для персонала (Фото с сайта www.capcomespace.net).
Старт первой космической РН Diamant A 26 ноября 1965 г. Франция — третья в космосе! (Фото CNES).
На 149-й секунде полета был сброшен головной обтекатель. Пустая вторая ступень отделилась на 280 секунде. Одновременно четыре небольших РДТТ обеспечили закрутку третьей ступени с ИСЗ до 270 об/мин. Двигатель ступени включился на 437-й секунде и проработал 55 сек.
Спутник отделился от отработавшей третьей ступени на 619-й секунде полета и вышел на орбиту со следующими параметрами (в скобках приведены расчетные значения):
— наклонение — 34,24°;
— высота перигея — 527 км (510±35 км);
— высота апогея — 1808 км (2250±330 км);
— начальный период обращения — 108,61 мин.
Спутник А-1[12] представлял собой телеметрический контейнер массой 42 кг и диаметром корпуса 0,5 м, изготовленный фирмой MATRA. Он нес оборудование для контроля третьей ступени, химические батареи на 15 суток работы и радиомаяк (136,530 Мгц). Научных приборов спутник не имел. Радиомаяк функционировал очень плохо (по некоторым сведениям — вообще не функционировал) и полностью прекратил работу в конце второго дня полета (28 ноября 1965 г.). Возможной причиной этого считают повреждение бортовых антенн на участке выведения.
Концепция РН Diamant вполне допускала модернизацию.
Уже в 1962 г. начался анализ технического проекта носителя «Diamant Operationnel», по грузоподъемности аналогичного американской ракете Scout. В конце концов программа, названная Diamant В, получила официальное одобрение 30 июня 1967 г.
Первое усовершенствование РН — замена ступени «Изумруд» на более мощную «Аметист» (Amethyste). CNES применил здесь свой опыт с перспективными компонентами топлива (азотный тетроксид/несимметричный диметилгидразин), полученный при разработке второй ступени (Coralie) для общеевропейского носителя Europa 1, а также экспериментального аппарата Cora.
«Аметист» унаследовал конструктивную схему «Изумруда», но с «расчетверенной» двигательной установкой от Coralie (адаптированный двигатель Vexin с увеличенными размерами, родоначальник ЖРД серии Valois). Вторая ступень Topaze и приборный отсек остались неизменными. Заново разработали третью ступень Р.68 (модифицированный вариант Р.6 с улучшенной теплозащитой и воспламенителем) и обтекатель.
Новые ступени совершили четыре суборбитальных полета в составе экспериментальной ракеты VEMPA.
Пуск РН Diamant B (Фото CNES).
В полете Diamant B-P4 (Фото CNES).
Первый Diamant В стартовал с нового полигона Куру во Французской Гвиане (после обретения Алжиром независимости французам пришлось уйти из этой страны, эвакуировав космодром в Колон-Бешаре 1 июля 1967 г.). Было выполнено пять попыток орбитальных запусков носителя, две из которых оказались аварийными.
К началу 1970-х годов Европейская организация по разработке ракет-носителей ELDO вступила в серьезный кризис (череда аварий ракеты Europa и уход из организации Великобритании). Французы в этой связи решили продолжить программу национальной РН. После исследования ряда вариантов (в т. ч. с использованием комплектующих от британской ракеты Black Arrow) остановились на версии Diamant B-P4.
Выпуск экспериментальных ракет Topaze к тому времени уже прекратился. Поэтому вместо нее применили вторую ступень с баллистической ракеты для подводных лодок SLBM (Submarine Launched Ballistic Missile) — на базе односоплового РДТТ Rita I (или РЧ[13]). Система управления вектором тяги — впрыском фреона в закритическую часть сопла; имелся также малый «креновой» РДТТ.
Было выполнено три пуска версии В-РЧ. Последний старт 27 сентября 1975 г. завершил программу французской национальной РН Diamant — через 10 лет после ее первого полета.
Несмотря на имевшиеся предложения по созданию новых национальных РН на базе «Алмаза», во второй половине 1970-х годов французские ракетчики — чтобы не распылять силы и упрочить лидерство в международной кооперации — сосредоточились на проекте нового общеевропейского носителя L-3S Vega (который со временем превратился в Ariane).
Что касается французских ИСЗ (отметим, в «космическом клубе» страна занимает почетное «третье место» после СССР и США), хронология их создания и запуска выглядит следующим образом.
Компоновочная схема РН Diamant A: 1 — сбрасываемый головной обтекатель; 2 — спутник Asterix (технологическая капсула А-1); 3 — твердотопливный двигатель третьей ступени Rubis с неподвижным соплом; 4 — отсек системы управления и закрутки третьей ступени; 5 — твердотопливный двигатель второй ступени Topaze; 6 — поворотные сопла РДТТ второй ступени; 7 — коническая защитная юбка второй ступени; 8 — твердотопливный газогенератор системы вытеснения топлива первой ступени; 9 — бак окислителя (азотная кислота) первой ступени; 10 — бак горючего (скипидар) первой ступени; 11 — ЖРД Vexin первой ступени, установленный в кардановом подвесе; 12 — аэродинамические стабилизаторы (4 штуки); 13 — РДТТ управления первой ступени по крену (2 шт.).
Спутник FR-1, запущенный «Скаутом» (Фото CNES).
Через 10 дней после А-1 в космос ушел FR-1 (масса 61,2 кг, фирма-изготовитель Nord-Aviation). Спутник был запущен 6 декабря 1965 г. американским носителем Scout с авиабазы ВВС Ванденберг и выведен на орбиту высотой ~750 км. Основным его назначением было исследование прохождения сверхдлинноволнового излучения через атмосферу и измерение электронной концентрации по трассе полета.
На орбите спутник стабилизировался вращением; для определения его ориентации служили магнитометр и солнечный датчик.
В соответствии с программой CNES, 17 февраля 1966 г. с полигона Хаммагир РН Diamant А был запущен геодезический[14] спутник D-1A (D-1), получивший название Diapasone. ИСЗ вышел на орбиту 499x2738 км и наклонением 34,03°. Расчетная продолжительность активного существования составляла 3 месяца.
Спутник (массой 19 кг) изготовила фирма Engines Matra. Он имел вид плоской «консервной банки» диаметром 0,5 м и высотой 0,2 м. К корпусу крепились пять штыревых антенн и четыре панели солнечных батарей. Вместе с ИСЗ был запущен телеметрический приборный контейнер массой 19 кг, который отделился от днища спутника после выхода на орбиту.
Спутник D-1C (масса 23 кг) был запущен 8 февраля 1967 г. также с полигона Хаммагир РН Diamant А. После выхода на орбиту получил наименование Diadem I. Конструктивно он напоминал «Диапазон», но отличался от последнего наличием 144 отражателей лазерного излучения, укрепленных на панелях СБ и корпусе. Спутник предназначался, в основном, для геодезических измерений. Его точное местоположение на орбите определялось тремя способами:
— по доплеровскому сдвигу частоты сигналов передатчиков ИСЗ;
— по отраженному лучу лазера, посланному наземной станцией;
— путем фотографирования спутника на фоне звездного неба.
15 февраля 1967 г. стартовал Diamant А с ИСЗ Diadem II. По конструкции и задачам этот спутник был аналогичен своему собрату. Его предполагалось вывести на орбиту с более высоким апогеем, чем у «Диадема-1», для чего облегчили третью ступень РН. Однако топливный заряд РДТТ этой ступени выгорел не полностью, и спутник оказался на гораздо более низкой орбите. А 6 апреля 1967 г. его радиопередатчики внезапно замолчали.
Фото И.Афанасьева.
Запуском «Диадема-2» был завершен первый этап французской программы космических исследований, предусматривавший запуск малых ИСЗ ракетой Diamant A с полигона в Хаммагире. К концу этапа (43 месяца) на орбиту были выведены 4 спутника, изготовлены и поставлены 44 ступени Emeraude и 12 капсул А-1 (включая 8 летных). Вся серия укомплектованных «Диамантов А» (4 носителя) была использована, дальнейшее изготовление этой РН не предусматривалось.
Общеевропейский носитель — от «Европы» к «Ариану».
Сознавая, что только объединенными усилиями Европа сможет проторить сколько-нибудь значительную по масштабам «дорогу в космос», 1 декабря 1960 г. в Мейриине (Швейцария) состоялось подписание соглашения о создании постоянной Европейской организации по исследованию космического пространства ESRO (European Space Research Organization). Бельгия, Голландия, Норвегия, Швеция и инициатор «третьего (независимого от СССР и США) пути» Великобритания подписали соглашение в полном объеме. Дания, Франция, Италия, Испания и Швейцария поставили подписи с оговорками, а ФРГ предпочла отложить подписание на более поздний срок.
Была намечена следующая программа деятельности ЕSRО.
Первый этап — запуск небольших (массой около 45 кг) ИСЗ, оснащенных относительно простым научным оборудованием. В течение трех лет предполагалось провести:
— детальное изучение структуры ионосферы, наблюдение за солнечной активностью в области ультрафиолетового и рентгеновского излучений;
— астрономические наблюдения в областях спектра, в которых они невозможны с поверхности Земли;
— метеорологические и геодезические измерения;
— регистрацию космических лучей и микрометеоров.
Одновременно планировалось создать задел по более тяжелым ИСЗ массой 225–450 кг, а также КА для запуска в сторону Луны (готовность к старту через 5 лет).
Последующие этапы включали разработку космической техники для доставки научной аппаратуры на Луну, исследования других планет и организации орбитального мониторинга в околосолнечном пространстве.
Соглашение в рамках ESRO не предусматривало ограничений по ракетам-носителям. Предполагалось, что до создания европейской РН для запуска ИСЗ будут привлекаться американские ракеты.
Первый общеевропейский малый спутник планировалось запустить в 1967 г., а первый тяжелый — в 1969 г. Пуски РН Blue Streak намечались с полигона Вумера, РН Diamant — из Куру. Рассматривался вопрос о ракетном полигоне в зоне полярных сияний (между 65° и 72°с.ш.): изучались район Кируна (Швеция), Нассассуак (Гренландия) и Андё (Норвегия).
Схема ракеты-носителя Еигора 1: 1 — сбрасываемый ГО; 2 — экспериментальный спутник; 3 — плоскость отделения спутника; 4 — бак горючего третьей ступени; 5 — бак окислителя третьей ступени; 6 — баллон со сжатым гелием; 7 — ЖРД управления; 8, 13 — маршевый двигатель; 9 — бак окислителя второй ступени; 10 — бак горючего второй ступени; 11,18 — трубопровод подачи окислителя в ЖРД; 12 — межступенчатый переходник; 14 — герметизированный отсек оборудования; 15 — бак окислителя первой ступени; 16 — линия наддува окислителя; 17 — бак горючего первой ступени; 19 — теплообменник; 20 — ДУ первой ступени.
Было решено создать Европейский центр космической техники ESTC (European Space Technology Centre), отвечающий за проектирование, разработку и изготовление головных частей РН, ИСЗ и КА, а также Европейский центр обработки данных космических полетов ESDC (European Space Data Centre), который занимался бы вопросами сопровождения и телеметрии, расчетом орбит спутников, а также солнечными и геодезическими измерениями. Планировалось построить четыре станции сопровождения и телеметрических измерений и три станции оптического слежения.
30 января 1961 г. в Страсбурге (ФРГ) открылась конференция по вопросу создания Европейской организации по разработке ракет-носителей ELDO (European Launcher Development Organization). В ней участвовали официальные представители 12 стран: Англии, Франции, ФРГ, Италии, Швейцарии, Австрии, Бельгии, Голландии, Норвегии, Швеции, Дании и Испании. Канада, Греция, Ирландия и Турция прислали наблюдателей.
Главным итогом конференции стал следующий тезис: если разработку РН начать немедленно, то первое испытание полностью скомплектованной трехступенчатой ракеты может состояться уже в середине 1965 г.
Тем не менее, создание ELDO шло туго. Не все страны-участницы желали раскошеливаться «на космос». Англия и Франция «нажали»: предложили решить вопрос «в принципе» уже к концу марта 1961 г. Требовалось также сформулировать свою позицию по финансовым обязательствам (по предварительному согласию, взносы стран — участниц ELDO предполагались в той же пропорции, как и в другой общеевропейской организации — ядерном исследовательском центре ENRC (European Nuclear Research Centre), который был основан несколькими годами ранее).
Бюджет ELDO на 5 лет определялся в 70 млн ф. ст. Продолжение Англией опытных работ по ракете Blue Streak поглощало 55 % бюджета; работы Франции по созданию второй ступени требовали 18 %, на создание третьей ступени выделялось около 9 % бюджета организации.
Размещение общеевропейских контрактов производилось либо администрацией ELDO, либо, по ее поручению, правительствами соответствующих стран «на основе рационального распределения работ среди участвующих субъектов с учетом их технического уровня и состояния экономики». Техническим опытом, накопленным в ходе выполнения программы, имели право пользоваться все участники организации.
16 апреля 1962 г., когда на конвенции по созданию ELDO была поставлена последняя подпись, в числе основателей оказались шесть европейских стран и Австралия. Главные задачи распределялись следующим образом: Англия — разработка первой, Франция — второй, ФРГ — третьей ступени; Италия — экспериментальных ИСЗ; Голландия — телеметрической системы дальнего действия; Бельгия — наземных станций управления; Австралия — строительство стартового комплекса. Резиденцией ELDO был избран Париж, где находилась и ESRO.
Трехступенчатая РН получила название «Европа-1» (Europa 1). Ее первой ступенью служила английская ракета Blue Streak, второй — французская Coralie и третьей — ракета Astris, разрабатываемая ФРГ.
На создание РН ассигновывалось 105 млн ф. ст. (однако фактическая потребность в средствах скоро превысила 130 млн ф. ст.).
«Европа-1» была рассчитана на вывод ПГ массой 1150 кг на полярную орбиту высотой 500 км, или же 180 кг — на орбиту высотой ~9300 км.
Перевозка Blue Streak для стендовых испытаний (Фото из архива Николаса Хилла (www.spaceuk.org)).
Было согласовано, что ЛКИ Blue Streak в варианте первой ступени общеевропейской РН начнутся в конце 1963 г. с полигона Вумера, а первый старт полностью скомплектованной трехступенчатой РН, при котором на орбиту должен быть выведен ИСЗ, — в начале 1966 г.
Первая ступень РН практически не отличалась от исходной ракеты Blue Streak.
Вторая ступень разрабатывалась Лабораторией баллистических и аэродинамических исследований LRBA и фирмой Nord-Aviation. Coralie[15] оснащалась четырехкамерным ЖРД. Топливо (окислитель — АТ, горючее — НДМГ) вытеснялось в камеры сгорания под давлением 20 кг/см2. Камеры отклонялись в шарнирных подвесах на угол до 12°; их гидроприводы приводил в действие турбонасос, раскручиваемый от газогенератора. Успешные огневые стендовые испытания Coralie были проведены в Верноне 9 декабря 1965 г.
Третью ступень разрабатывали фирмы Belkov и ERNO. Astris оснащалась одним маршевым и двумя верньерными ЖРД. Топливо — AT и «Аэрозин-50» (А-50) — вытеснялось из титановых баков сжатым гелием. Давление в камерах сгорания 10 кг/см2. Охлаждение камеры маршевого двигателя (до горловины сопла) — регенеративное; степень расширения сопла 1000. Маршевый ЖРД мог отклоняться в двух взаимно перпендикулярных плоскостях на угол до 8°, верньерные — на угол до 40° в плоскости тангажа и до 80° в плоскости рысканья.
Маршевый и оба верньерных ЖРД включались до отделения второй ступени.
На третьей ступени устанавливалась радиокомандная система управления. Ее бортовые приемники работали на частоте 700 и 1400 МГц. Телеметрическая система обеспечивала контроль 250 различных параметров.
Первые огневые испытания двигателей третьей ступени были проведены на полигоне DLR 1 апреля 1965 г.
Cora — самая тяжелая баллистическая ракета, испытанная в полете на территории послевоенной Западной Европы (Фото с сайта www.capcomespace.net).
Для летных испытаний верхних ступеней по программе ELDO была создана экспериментальная ракета Cora длиной 11,5 м, диаметром 2,0 м и стартовой массой 16,5 т. Она включала французскую первую ступень (модифицированная Coralie с укороченными «земными» соплами), западногерманскую вторую ступень (Astris) и итальянский ГО. Два ЛКИ — 27 ноября и 18 декабря 1966 г. — были выполнены из Хаммагира (Алжир) и одно — 25 ноября 1967 г. — из Бискарроса на Атлантическом побережье Франции. Во всех полетах рабочей была лишь первая ступень.
По программе намечалось провести 10 летно-конструкторских испытаний «Европы-1» (ELDO-A), получивших обозначение F1…F10. Следует отметить, что Europa 1 в целом не соответствовала передовому техническому уровню того времени[16], а о ее надежности можно говорить только приблизительно.
Сборка ступеней РН Europa (Фото с сайта www.capcomespace.net).
Начало программы Europa (испытание ракеты Blue Streak без верхних ступеней в Спейдедаме)… (Фото DERA).
… и окончание (Europa 2, полет F1, Куру) (Фото с сайта www.capcomespace.net).
Все первые пуски по программе ЛКИ проходили с австралийского полигона Вумера в период с 1964 г. (F1) по 1970 г. (F9). Причем к трем последним стартам РН Europa 1 готовилась в полной комплектации и несла «учебный» спутник STV. Неполадки третьей ступени привели к авариям РН. Также неудачно закончилась попытка четвертого орбитального — и первого из Куру, Французская Гвиана[17] — пуска РН Europa 2 (F11) на геостационарную орбиту. Следующий пуск (F12[18] из Куру) намечался на апрель 1972 г., но он так никогда и не состоялся…
Отметим: задача создания общеевропейской РН не была очевидной даже для некоторых стран-членов ELDO. Соединенные Штаты не возражали против запуска европейских КА американскими носителями, если речь шла о «науке». Но все осложнилось, когда Европа захотела получить собственные спутники прикладного назначения (разведки, метеорологии, связи, навигации). Америка если и не отказывалась запускать такие КА, то заломила за их выведение на орбиту такую цену, что европейским пользователям было о чем задуматься…
После запуска первых спутников связи на геостационарную орбиту (ГСО) преимущества последней стали столь очевидны, что Европа начала разработку собственного носителя для выхода на геостационар. В июле 1966 г. был утвержден проект ELDO PAS (Europa 2): ракета стартовой массой 112 т представляла собой модернизированный вариант Europa 1 с «перигейно-апогейной системой» (включала перигейный РДТТ четвертой ступени и апогейный РДТТ спутника) для запуска КА массой 170 кг на геостационарную орбиту. Великобритания заменила систему радионаведения Blue Streak на инерциальную. Италия обеспечила создание перигейного РДТТ и экспериментального спутника STV, Франция подготовила Центр запусков в Куру.
Столь мизерная масса ПГ, доставляемого на геостационар, сподвигла ELDO на кардинальный пересмотр концепции общеевропейского носителя — так появилась Europa 3. Один из предлагавшихся вариантов представлял собой двухступенчатую ракету высотой 36,5 м, диаметром корпуса до 3,8 м и максимальной стартовой массой 191 т. Первую ступень L150 предполагалось оснастить четырьмя ЖРД Viking II французской разработки на АТ-НДМГ общей тягой 240 тс. Вторая ступень с кислородно-водородным двигателем Н-20 должна была развивать тягу 20 тс в вакууме. Последний имел исключительно высокие характеристики, особенно по давлению в камере сгорания и удельному импульсу[19]. Такого ЖРД не было тогда не только в Европе, но и в США. Первый запуск РН Europa 3 планировался на 1978 г.
Europa 1/2 оказалась «слишком слабой», a Europa 3 — «слишком смелой».
На фоне феерической лунной эпопеи США и солидной программы орбитальных станций СССР чрезмерные расходы, малый «выход» разработок и неутешительные испытания «Европы» космической (F7… F12) вызвали угрозу распада ELDO. Кроме того, «портили жизнь» еще две проблемы: во-первых, организация не имела подлинных полномочий ни в технических решениях, ни в «политическом» руководстве программой (последнее слово принадлежало государствам — членам ELDO). Во-вторых, Великобритания — инициатор создания организации — начиная с 1964 г. стала понемногу «остывать» к тяжелой РН. В апреле 1969 г., когда в ELDO решили инициировать разработку новой мощной и совершенной «Европы-3», способной доставить 400–700 кг на геостационар, англичане и итальянцы «вышли из игры».
*Высотой 550 км.
**На геостационарную орбиту — 230 кг (перигейный РДТТ стартовой массой 897 кг, тягой 41,2 кН, удельным импульсом 276,0 сек и временем работы — 45 сек).
***Размах по аэродинамическим стабилизаторам.
Наши дни: руины испытательного стенда и останки первой ступени ракеты-носителя Europa 1 в Спейдедаме.
Кризис ELDO вызвал в 1972 г. острейшие дебаты стран-участниц о путях развития «европейского космоса». В результате, проекты Europa 2 и 3 были прекращены, а ELDO, «освоившая» за время своего существования 745 млн $, ликвидирована.
«Третий путь в космос», казалось, не состоялся. Застрельщица создания общеевропейской РН Англия «сдалась» на милость американцев. Германии разрабатывать собственные ракеты нечего было и мечтать — обвинения в реваншизме посыпались бы и с Востока, и с Запада… А что же Франция, чья политическая независимость, реанимированная и выпестованная после войны Шарлем де Голлем, вполне допускала роль лидера? Надо отдать должное: Франция приняла вызов!..
Когда французы осознали, что участь европейской РН находится в их руках, они поручили национальному космическому агентству CNES сформировать специальную группу для подготовки «резервной программы». Результатом деятельности группы стало предложение разработать недорогую ракету с высокими характеристиками, использующую апробированные технологии и нацеленную на прибыльный рынок КА связи.
Для минимизации рисков в новом проекте L-3S (r)[20] предлагалось базироваться только на решениях, которые могли быть реализованы французской промышленностью.
Особенно это касалось криогенной верхней ступени. Чтобы ее характеристики не были «рекордными», специалисты CNES предложили ввести промежуточную (вторую) ступень на долгохранимом топливе с тем же ЖРД, что на первой ступени. Прочие технические решения — по конструкции, оборудованию, аэродинамике и т. д. — также строились на концепции «здорового консерватизма».
Обобщив опыт программ Diamant В и В-РЧ, французы экстраполировали свои методы управления проектом для разработки графика (на семилетний период 1973–1979 гг.) создания новой РН при затратах в 2–3 раза меньших, чем у Europa 3. Хотя L-3S по масштабам на порядок превосходил Diamant В, они были убеждены, что, если управлять программой по инновационным принципам, вероятность успеха будет весьма высока.
Europa 3B (слева) и французские предложения в рамках «резервной программы».
«Симфония», на примере которой США решили указать Западной Европе «ее место» в коммерческом космосе (Фото ESA).
Чтобы упрочить свое техническое и политическое лидерство, Франция предложила странам-партнерам оплатить любые расходы свыше 120 % оцененной общей стоимости. Более чем вероятно, что именно этот аргумент убедил европейских «соратников» принять участие в новой амбициозной программе.
Французы смогли также извлечь выгоду из двух непродуманных решений, принятых заокеанским конкурентом. Первое: в 1973–1974 гг. США пытались блокировать коммерческую эксплуатацию франко-германских спутников связи Symphony. И второе: NASA запланировало прекратить запуски одноразовых носителей в 1980-х гг. в пользу кораблей Space Shuttle, чья стоимость была существенно недооценена[21].
Важность независимого доступа Европы в космос стала очевидной!
Компоновка ступеней Ariane 1 (Фото с сайта www.capcomespace.net).
В июле 1973 г. в результате слияния ELDO и ESRO родилось Европейское космическое агентство ЕКА (European Space Agency) — главный штаб по координации усилий стран Старого света в их космической экспансии. А основным инструментом этой экспансии должна была стать ракета Ariane (бывшая L-3S), названная так в честь дочери критского царя Миноса, которая помогла греческому герою Тезею убить чудовищного Минотавра и выбраться из его лабиринта.
Как показало время, данная концепция — и ракетно-космическая техника для ее осуществления — оказалась и востребованной, и рациональной. Что, в свою очередь, позволило объединенной Европе успешно выполнить заявленную миссию — проложить масштабный «третий путь» в космос.
Трехступенчатая ракета Ariane стартовой массой 210 т и общей высотой 47,4 м предназначалась для запуска ПГ массой 1700 кг на переходную к геостационарной орбиту.
На первой и второй ступенях РН были установлены ЖРД на долгохранимом самовоспламеняющемся топливе с турбонасосной подачей семейства Viking — крупнейшее достижение французского двигателестроения за 20 лет работы.
Двигатель-прототип МЧ0 (тяга на земле — 40 тс, давление в камере сгорания — 50 атм, масса 400 кг) был предложен группой специалистов во главе с Хайнцем Брингером (Heinz Bringer) в 1966 г. на основе камеры сгорания ЖРД Valois первой ступени РН Diamant В и вновь разработанного турбонасосного агрегата. Первые огневые стендовые испытания состоялись 5 июня 1969 г. Впоследствии двигатель получил название Viking. Предполагалось, что он будет установлен на первой ступени нового французского национального носителя Diamant C.
Французские ЖРД (1945–1967 гг.).
В 1968 г. состоялось изучение новой ступени, способной заменить Blue Streak в носителе Europa 2. Рассматривалась связка из четырех двигателей М50 (форсированный до 50–55 тс вариант прототипа).
Связка четырех Viking V на первой ступени Ariane 1 (Фото Arianespace).
В 1970 г. для РН Europa 3 предложена связка четырех-пяти М50, форсированных до 60 тс каждый (Viking II, первая буква названия взята, по традиции, от Vernon).
1972 г. — CNES предлагает проект L-3S для замены проекта Europa 3. Четыре Viking II на первой ступени и один — на второй.
1974 г. — L-3S переименован в Ariane. Viking II модифицирован: переделана камера, форсированы характеристики и установлены колоколообразные сопла — «земные» на первой ступени (Viking V, тяга 66 тс на уровне моря) и «высотные» на второй (Viking IV, тяга 71 тс в пустоте).
Еще одним слагаемым успеха Ariane явился позитивный опыт разработки и создания криогенных ЖРД. Европа присоединилась к «водородному клубу» в 1979 г., за ней последовали Китай (1984 г.), Япония (1986 г.), Советский Союз (1987 г.) и Индия (2001 г.).
В 1962 г. во Франции начались исследования варианта РН Diamant со второй ступенью, оснащенной кислородно-водородным двигателем Н-2 тягой 6 тс, и третьей ступенью с аналогичным двигателем Н-3 тягой 0,4 тс. Через 2 года этот проект был заменен на Diogene (от Diamant-Hydrogene), включающий вторую ступень Опух с четырехкамерным двигателем НМ-4 тягой 6 тс (уменьшена до 4 тс в 1965 г.). Первый прожиг НМ-4 был проведен в июле 1967 г., однако программу остановили в 1968 г. после 85 стендовых испытаний. Одновременно исследования криогенных двигателей проводила Германия. В 1967-68 гг. фирма МВВ испытала камеру сгорания тягой 13 тс, давление в которой достигало 280 атм. В 1968 г., когда ELDO рассматривала возможность установки криогенного ЖРД на второй ступени ракеты Europa 3, Франция и Германия выступили с альтернативными предложениями. В 1970 г. их проекты были объединены в двигателе Н-20 тягой 20 тс (давление в камере 130 атм). Однако этот ЖРД так и не был разработан — программа Europa 3 была отменена. В июле 1973 г. пошел проект L-3S (Ariane), в котором было решено применить третью ступень с двигателем НМ-7. Этот криогенный (кислородно-водородный) ЖРД впервые в Европе был доведен до стадии летной эксплуатации.
Схема РН Ariane 1: 1 — головной обтекатель; 2 — ПГ для демонстрационного полета; 3 — кислородно-водородная третья ступень; 4 — двигатель НМ-7А третьей ступени; 5 — вторая ступень на долгохранимом топливе; 6 — двигатель Viking IV второй ступени; 7 — первая ступень на долгохранимом топливе; 8 — торовый бак с водой; 9 — аэродинамические стабилизаторы; 10 — двигательная установка первой ступени (Drakkar) — связка из четырех двигателей Viking V.
РН Ariane могла выводить два спутника сразу: установка «верхнего» КА на переходник SYLDA (Фото с сайта www.capcomespace.net).
Первый полет Ariane был намечен на 15 декабря 1979 г. Обратный отсчет прошел нормально, он транслировался в прямом эфире по радио и телевидению. В 11:30 заработали четыре двигателя Viking… но носитель остался стоять на стартовом столе. Через восемь секунд после включения двигатели были аварийно отсечены: на линии редуктора давления через 1,7 сек после зажигания произошел взрыв.
РН не была повреждена и могла быть повторно запущена, но ее следовало, как выражаются наши европейские коллеги, «реконфигурировать»… 23 декабря ракета вновь была готова стартовать.
24 декабря 1979 г. — первый старт Ariane 1 (Фото Arianespace).
Однако обратный отсчет остановился за 52 секунды до подъема РН — возникли проблемы в наземном электрооборудовании…
Наконец, 24 декабря 1979 г. первый полет Ariane завершился полным успехом. Для ЕКА это было самое счастливое Рождество за всю историю организации…
23 мая 1980 г. неустойчивость горения в камере двигателя D на 112-й секунде полета второй РН Ariane привела к ее разрушению.
19 июня 1981 г. третий полет РН Ariane был полностью успешным. Европейский носитель заступил на свою долгую «космическую вахту».
РН постепенно совершенствовалась, пройдя стадии от Ariane 1 до Ariane 4, самого успешного носителя ЕКА вплоть до настоящего времени. Ступени ракеты заменялись на новые, вокруг первой навешивались ускорители — как с РДТТ, так и с ЖРД. Эту «рабочую лошадку» Европы сменила современная и гораздо более мощная, однако во многом спорная версия Ariane 5. Но это уже совсем другая история.
Справедливости ради отметим, что, помимо разработок РН общеевропейских, французских и английских, усилия в этом направлении предпринимали также другие страны субконтинента.
В частности, итальянцы к началу 1960-х гг. запустили большое число исследовательских ракет с авиационной базы Рердасдефогу (о. Сардиния). Помимо изделий, полученных от NASA, Италия применяла также ракеты собственного производства (на базе РДТТ фирмы Bombrini-Parodi-Delphino (BPD), основанной еще в 1913 г. для производства порохов, взрывчатых веществ и боеприпасов).
Последний старт «классической» Ariane 44L. 15 февраля 2003 г. (Фото Arianespace).
Итальянское правительство в 1959 г. впервые выделило средства для национальной программы космических исследований, что позволило образовать Центр аэрокосмических исследований CRA (Centro Ricerche Aerospaziali) в Римском университете и оборудовать базу на о. Сардиния для запуска зондирующих ракет на высоту до 960 км. Цель этих пусков: определение температуры и ветров в верхних слоях атмосферы посредством создания облака паров натрия.
Накопленный опыт позволил говорить о расширении работ. Через три года Римский университет заключил с NASA договор о сотрудничестве в программе, названной San Marco. Предусматривалось создание одноименного итальянского ИСЗ и его запуск с помощью американской ракеты-носителя.
Спутник San Marco 1 на последней ступени РН Scout (справа) и общий вид итальянского морского космодрома с подготовленным к старту носителем (Фото John Ives и John Raymont).
Поскольку база на Сардинии не позволяла осуществлять запуски крупных ракет из-за высокой плотности населения и большого количества морских и воздушных трасс в этом районе, группа специалистов во главе с Луиджи Брольо (Luigi Broglio), известным в итальянской прессе как «наш фон Браун», высказала идею разместить стартовые сооружения для американской РН Scout на платформах в Индийском океане. Идея стала столь популярна в Италии, что ее даже благословил римский папа Павел VI как «пример международного сотрудничества ради прогресса науки».
Итальянский морской космодром «Сан-Марко» (San Marco) был сооружен в бухте Нгвана в 5 км от побережья Кении. Состоит из двух платформ — «Сан-Марко» и «Санта-Рита», расположенных на расстоянии около 500 м одна от другой, приводимых в стартовое положение с помощью выдвижных стальных опор на морское дно и связанных кабелем. Платформа «Сан-Марко» (длина 90 м) включает ПУ и монтажно-испытатель-ный ангар для сборки РН. «Санта-Рита» переоборудована из платформы для бурения нефтяных скважин. На ней размещен пункт управления запуском и оборудование для слежения за полетом РН.
На первом этапе программы, в апреле и августе 1963 г., с американского полигона на о. Уоллопс двумя ракетами Shotput были выведены на суборбитальную траекторию прототипы итальянского спутника. Тогда же платформа «Санта-Рита» прибыла из Италии к африканскому побережью. Во время предварительных испытаний, в марте и апреле 1964 г., с нее были запущены три зондирующие ракеты Nike Apache.
Следующим этапом программы стал запуск первого итальянского спутника San Marco 1 с о. Уоллопс 15 декабря 1964 г.
Платформа «Сан-Марко» с сооружениями, необходимыми для сборки и запуска РН Scout, была готова в 1966 г. На третьем этапе с нее 26 апреля 1967 г. успешно стартовал «рабочий» спутник San Marco 2. Через три года Explorer 42, названный «Ухуру» (Uhuru), стал первым американским ИСЗ, запущенным иностранной стартовой командой. Всего же с космодрома «Сан-Марко» на орбиту выведены девять КА (4 итальянских, 4 американских и 1 британский). Морской космодром применялся также при пусках зондирующих ракет для экспериментов по итальянским и американским программам.
С 1988 г., после вывода ракеты Scout из эксплуатации, комплекс «Сан-Марко» не используется, хотя основные его системы сертифицированы до 2014 г. Итальянское космическое агентство ASI ведет переговоры о пусках с платформы российского носителя «Старт-1».
Спутники San Marco массой 113–274 кг предназначались для исследования атмосферы и ионосферы в экваториальной зоне. КА имели сферическую форму и состояли из двух концентрических оболочек — легкой внешней и сравнительно тяжелой внутренней, скрепленных эластичными связями. Во внутренней оболочке размещались контейнеры с тензометрами, электроникой и батареями электропитания. Аэродинамическое торможение — и, соответственно, смещение внешней оболочки относительно внутренней — позволяло измерять плотность верхней атмосферы.
Стабилизация ИСЗ — вращением. Для определения пространственной ориентации служили 6 солнечных датчиков. Два телеметрических передатчика работали на частоте 136,74 МГц, командный приемник — на частоте 149,52 МГц. К корпусу спутника крепились четыре штыревые (0,48 м) и две развертываемые (2,54 м) антенны.
Итальянский спутник STV, созданный в рамках ESRO-ELDO для контроля бортовых систем РН и приобретения опыта траекторных измерений западноевропейскими станциями слежения, «участвовал» в летных испытаниях ракеты Europa. К сожалению, ни в одном из пусков аппарат на орбиту не вышел: во всех случаях подводил носитель.
Таким образом, Италия имела потенциал, чтобы войти в «космический клуб»: обладала собственным космодромом и спутниками. Оставалось создать национальный носитель.
В 1977 г. совместная группа специалистов Римского университета и проекта San Marco предложила разработать улучшенный вариант знакомой им РН Scout.
Наиболее мощный на тот момент Scout F1, который мог вывести с платформы «Сан-Марко» спутник массой около 200 кг на орбиту высотой 550 км, включал четыре твердотопливных ступени (Algol IIIA, Castor IIА, Antares IIВ и Altair IIIA), имел длину 22 м и массу 21 т. В варианте G1 (первый полет в 1979 г.) Antares IIВ был заменен на Antares IIIA, что позволило увеличить массу ПГ до 220 кг.
Легкая четырехступенчатая РН Scout (США), на базе которой разрабатывался итальянский носитель (Фото NASA).
По проекту San Marco Scout вокруг штатной первой ступени предстояло смонтировать ускоритель Santa Rita — связку из четырех двигателей Algol IIIA — и демонтировать четвертую ступень. Ракета могла бы выводить ПГ массой почти 600 кг на орбиту высотой 550 км. А в пятиступенчатом варианте (еще один Altair IIIA в качестве пятой ступени) РН могла доставить 120 кг на переходную к геостационарной орбиту.
С начала 1980-х годов компания BPD вела самостоятельное исследование возможности создания легкого носителя, используя доступные РДТТ, в том числе навесные стартовые ускорители РН Ariane 3 и 4, которые находились в разработке, и двигатель ракеты Alfa (проект отменен в 1977 г.). Рассмотрев различные конфигурации, разработчики остановились в 1986 г. на концепции четырехступенчатой РН, условно названной SB7 (Solid Booster 7). Ее первая ступень — четыре стартовых ускорителя от Ariane 4 — окружали вторую ступень (один ускоритель Ariane 4); третья ступень — ускоритель от Ariane 3. Четвертой ступенью служил двигатель IRIS, первоначально задуманный как разгонный блок при запуске итальянских спутников на шаттле. SB7 был способен выводить ПГ массой до 500 кг на орбиту высотой 500 км с платформы San Marco. РН имела высоту 23 м и стартовую массу около 50 т.
В 1987 г. два проекта были объединены, и фирмы SNIA-BPD (Италия) и LTV (США) начали совместное изучение РН под названием Scout-Eagle, с грузоподъемностью вдвое больше стандартного «Скаута», но за деньги, составляющие 150 % стоимости американского носителя. К штатной легкой ракете добавлялась «навесная» первая ступень — два стартовых твердотопливных ускорителя от Ariane 3. Четвертая ступень заменялась европейским апогейным РДТТ Mage 2.
Через год проект был переименован в Scout 2. Предполагалось его задействование в программе германо-итальянских баллистических капсул ТО PAS, проектируемых для возврата с орбиты результаты европейских экспериментов по микрогравитации.
К 1990 г. итальянское правительство одобрило проект и финансировало модернизацию платформы San Marco и разработку носителя Scout 2. Кроме того, предполагалось дооборудовать полигон в Кении новыми радиолокационными станциями слежения, приема телеметрии и выдачи команд, а также создать спасаемую беспилотную капсулу Carina (Capsula di Rientro Non Abitata).
Пуск «полумакетной» ракеты Zefiro (Фото ASI).
Следует отметить, агентство ASI попыталось уменьшить свою зависимость от США и вновь вернулось к варианту BPD, который базировался преимущественно на национальных технологиях. 19 марта 1992 г. с полигона Сальто-ди-Квирра (Salto di Quirra) впервые стартовала (хотя и не совсем успешно) экспериментальная ракета Zefiro, которая могла бы стать первой ступенью новой итальянской РН. Она включала ускоритель от Ariane 4 с качающимся соплом и два макета навесных «бустеров». Во второй половине 1993 г. программа Scout 2 была закрыта, и принято решение сконцентрироваться на национальном проекте.
Запуск РН Vega в представлении художника (Рисунок Arianespace).
Но с «чистым» Zefiro ничего не получилось — международный рынок запусков итальянцев не ждал.
Тогда агентство ASI выдвинуло новую концепцию: «легкая» («малая») РН должна разрабатываться как системное дополнение к «тяжелой» Ariane 5. Предварительные проработки завершились предложением от февраля 1998 г. создать новую общеевропейскую РН Vega («Вега»). В работах предполагалось участие основных стран-членов ЕКА.
С точки зрения размерности, «Вегу» никак нельзя назвать «малой»: носитель имеет высоту 30 м, диаметр 3 м и сможет выводить на околополярную орбиту высотой 700 км ПГ массой не менее 1,5 т. Запуски «Веги» планируются из Куру: отсюда с 2008 г. наряду с «легкой» РН будут летать «тяжелая» Ariane 5 и «средний» «Союз-СТ», который создается по заказу компании Arianespace в России.
Программа Vega была официально принята Европейским космическим агентством в июне 1998 г. На встрече в Брюсселе в мае 1999 г. возникли разногласия среди государств — членов ЕКА относительно их участия в программе. Поиск приемлемого компромисса, в том числе оптимизация проектных характеристик РН, завершился в декабре 2000 г. Было признано целесообразным, чтобы «проект Vega прокладывал путь будущим прикладным программам РН среднего размера, дополняющим Ariane 5, и новому поколению стартовых ускорителей непосредственно для Ariane 5».
Конструкция «Веги» включала новую твердотопливную первую ступень P80FW, вторую и третью твердотопливные ступени на базе Zefiro 23 и Zefiro 9 соответственно и жидкостный верхний модуль AVUM.
Семь стран согласились участвовать в проекте с финансовым объемом 335 млн евро: Италия, Франция, Испания, Бельгия, Нидерланды, Швейцария и Швеция. Параллельно была одобрена разработка двигателя Р80FW (бюджет 123 млн евро).
Для Испании «дорога в космос» началась с сооружения станций слежения за КА, а также станций спутниковой связи… — американских (из них самая крупная, оснащенная антенной диаметром 64 м, расположена близ Мадрида).
Рисунок INTA.
15 ноября 1974 г. на американской РН Delta вместе с метеоспутником NOAA-4 и радиолюбительским OSCAR-7 на околополярную орбиту стартовал первый испанский национальный спутник Intasat, предназначенный для исследования ионосферы.
В 1992 г. испанский Национальный институт аэрокосмической технологии INTA объявил о планах разработки малой твердотопливной РН Capricornio («Козерог»; ПГ — до 100 кг на полярную орбиту высотой около 600 км). При этом INTA предполагал изготовить самостоятельно лишь вторую ступень (на базе метеоракеты Argo), а первую приобрести за границей. Третья ступень могла быть как иностранной, так и отечественной.
«Ракеты нет, а спутник выжил»: Nanosat 01 (Фото INTA).
По первоначальным планам, для первой ступени «Козерога» рассматривался РДТТ, созданный в рамках проекта аргентино-египетской (с участием также Ирака) баллистической ракеты Condor-2. Когда программа была свернута под давлением США, в Аргентине, которая продолжила данную разработку в ранге космической РН, имелось до 30 двигателей нужной размерности.
Пуски испанской РН предполагалось проводить сначала из местечка Эль-Араносилло (El Aranosillo) на атлантическом побережье страны, а затем — со стартового комплекса Исла-де-Эль-Хьерро (Isla de El Hiero) на Канарских о-вах.
Чтобы смягчить «антиракетный прессинг» США, институт INTA объявил об отказе от варианта Condor-2 и в июне 1997 г. заключил контракт с американской корпорацией Thiokol на поставку РДТТ Castor IVB (в качестве первой ступени) для двух первых пусков своей РН в 1999–2000 гг. Применение более слабого двигателя привело к снижению массы ПГ: Capricornio[22] мог теперь вывести лишь 50 кг на солнечно-синхронную орбиту высотой около 700 км. Кроме того, полностью зависимый от поставок из США, носитель не мог считаться национальным.
Для первого пуска «Козерога» Политехнический университет Мадрида UPM (Universidad Politecnica de Madrid) при технической поддержке INTA начал разработку двух микроспутников. Первый, получивший название Nanosat, предназначался для отработки системы пакетной связи между полярными антарктическими станциями и Испанией. Второй (Venus) — совместная разработка с рядом университетов Мексики и Аргентины для приобретения студентами опыта создания спутников и управления ими.
Однако необходимого финансирования (в объеме 32 млн $) на создание Capricornio испанское правительство не выделило[23]. INTA надеялся, что Европа примет разработку в качестве РН легкого класса. Но ЕКА отдало предпочтение итальянскому проекту Vega. В этой связи в 2000 г. работы по РН Capricornio были прекращены, а INTA решил участвовать в программе Vega, предложив свои технологии в области твердотопливных двигателей.
ПГ, планировавшийся для «Козерога», не «умер» вместе с РН. Аппарат Nanosat 01 был создан INTA при участии испанского Центра материаловедения CSIC, университета UPM, компаний A.D.Telecom и TTI. Он выполнен в виде двух шестиугольных призм, сопряженных основаниями. Панели арсенид-галлиевых СБ смонтированы на всех боковых гранях КА.
Nanosat 01 был запущен 18 декабря 2004 г. на РН Ariane 5 вместе с целой кучей французских военных спутников (КА видовой разведки Helios 2A, четырьмя микроспутниками радиоэлектронной разведки Essaim и экспериментальным ИСЗ Parasol). По словам руководителя проекта в INTA Хосе Торреса (Jose Tores), «успех с запуском Nanosat 01 является стимулом для работы над новыми проектами».
Сегмент малых научных и технологических ИСЗ — это, пожалуй, все, что осталось от весьма амбициозной национальной программы испанцев. Увы…
Первые ракеты и спутники «Страны восходящего солнца».
1 августа 2003 г. сгорел в атмосфере первый японский КА Ohsumi, запущенный 11 февраля 1970 г. ИСЗ активно функционировал в космосе всего 14–17 часов (до седьмого витка), а затем более трех десятилетий безмолвно кружил по своей орбите… С запуском «Осуми» Япония стала четвертой страной в мире после СССР, США и Франции, которая доставила в космос национальный искусственный спутник ракетой-носителем собственной разработки. Основной особенностью запуска было испытание схемы вывода типа «гравитационный поворот» (gravity turn).
…Несмотря на то, что ракеты были изобретены в Китае, в соседнюю Японию они попали кружным путем, через Европу, примерно в 1600 г.
До Второй мировой войны «Страна восходящего солнца» не проявляла заметного интереса к ракетной технике. Лишь в заключительной фазе войны японцы — как и их союзники, немцы — сделали ставку на «чудо-оружие» — ракеты. Известность получил неудачный пуск 1944 г., когда «большая» ракета свалилась в пригороде Токио, напугав случайных очевидцев. Самой же «продвинутой» японской разработкой того времени можно считать ракетоплан MXY-7 «Ока» (Ohka), сбрасываемый с винтового бомбардировщика и наводимый на цель пилотом-смертником. Пороховые ракетные ускорители разгоняли «Оку» в последние 10 секунд пикирования.
Поражение в войне и последовавший за этим запрет на широкий спектр научно-технических исследований не давали возможности проводить сколько-нибудь серьезных работ в области ракетостроения. Когда в 1954 г. запрет был снят, профессор Токийского университета Хидео Итокава (Hideo Itokawa) вместе с энтузиастами и студентами «Института промышленных наук» (Institute of Industrial Science) сделал крошечную пороховую ракету длиной 23 и диаметром 1,8 см, окрещенную «карандашом». Более 150 таких малюток было запущено, главным образом в горизонтальном положении, чтобы получить опыт проектно-конструкторской отработки.
Хидео Итокава (1912–1999) был не только ракетчиком, но и авиационным инженером, музыкантом, философом, доктором медицины, писателем. Во время Второй мировой войны, работая как проектант (конструктор) на фирме «Накадзима» (Nakajima), Итокава принимал участие в создании истребителей Ki-27 и Ki-44 «Секи», бомбардировщика Ki-49 «Донрю»; возглавлял группу, которая разработала известный японский истребитель Ki-43 «Хаябуса». В конце войны занял должность зам. декана инженерного факультета Токийского университета. С декабря 1953 г. возглавлял группу изучения авиационного оборудования и сверхзвуковой аэродинамики AVSA (Avionics and Supersonic Aerodynamics Group). Именовался прессой как «Доктор Ракета» («Dr Rocket»). В 1956 г. основал Японское ракетное общество JRS (Japanese Rocket Society) в рамках Международной астронавтической федерации IAF.
Знаменитые «карандаши» Х.Итокавы умиляют ракетомоделистов и одновременно демонстрируют: когда власть на стороне инженеров — технический прогресс фантастически успешен (Фото JAXA).
Решение японского правительства об участии страны в научной программе предстоящего Международного геофизического года позволило развернуть разработку ракет на более солидной основе.
В августе 1955 г. группа Итокавы провела пуски новых двухступенчатых изделий серии Baby-S (от Simple — простейший) длиной 134 и диаметром 7,5 см. В сентябре шесть Baby-T (от Telemetry — телеметрический) уже передали на наземные станции информацию о параметрах полета. Наконец, в октябре-ноябре 1955 г. на борту трех Baby-R (от Recovery — возвращаемый) совершили полет 16-мм фотокамеры (съемка подстилающей поверхности с высоты до 5000 м).
Итокава смог заинтересовать ракетами японскую промышленность, и компания Nissan Motor стала его главным подрядчиком. Правительство обещало финансовую помощь, и японские разработчики успешно спроектировали зондирующую ракету Карра («Каппа»). Летные испытания варианта Карра-1 длиной 2,26 м начались в сентябре 1956 г. По мере того, как группа Итокавы создавала новые двигатели твердого топлива и соединяла их в различные комбинации, диапазон вариантов этих ракет ширился.
В 1957 г. двухступенчатая Карра-4 уже измеряла интенсивность космических лучей и скорость ветра в верхних слоях атмосферы в рамках программы МГГ.
16 июня 1958 г. полетела двухступенчатая Карра-6, которая при массе 360 кг могла нести груз 7-10 кг на высоту до 60 км. К сентябрю 1960 г. совершили полет 13 таких ракет. Далее пошли улучшенные варианты Карра-6Н (High Performance — высокая эффективность) и намного более крупная Карра-8. Последние, обладая неплохими техническими характеристиками и сравнительно низкой стоимостью, стали пользоваться спросом и за пределами Японии. Так, в 1965 г. 10 таких ракет приобрела Индонезия. Закупали «Каппы» Югославия и Индия.
Используя РДТТ с корпусом из высокопрочной стали и более эффективное топливо, трехступенчатая Карра-9М в 1962 г. смогла поднять ПГ массой 80 кг на высоту более 300 км.
К началу 1960-х гг. исследования и успехи Итокавы привлекли внимание (и финансовую поддержку) правительственных учреждений, включая Управление по науке и технике, Министерство почт и связи и Министерство транспорта. Каждое из них имело собственные идеи относительно направления японских космических усилий.
Участвующая в деле влиятельная Федерация экономических организаций «Кайданрен» (Keidan-ren) склонила премьер-министра страны Сато Еисаку (Sato Eisaku) просить помощи у Соединенных Штатов, несмотря на «патриотические» желания министерств разрабатывать и строить спутники и ракеты-носители целиком «у себя».
Итокава за пультом управления пуском первых послевоенных ракет (именно с такого примитивного оборудования начиналось японское «электронное чудо») (Фото JAXA).
В стране разгорелись клановые «войны». Самые большие «сражения» происходили между Институтом космических исследований ISAS (Institute of Space and Aeronautical Sciences), в который была преобразована лаборатория Итокавы AVSA, и Агентством по науке и технике STA (Science and Technology Agency). Итокава упорно стоял на позиции, чтобы Япония разрабатывала и строила собственные ракеты-носители, но STA полагало, что главная цель — создание и запуск на орбиту собственных спутников, в т. ч. и на неяпонских ракетах.
Спор шел и по поводу приоритетов национальной космической программы. Итокава выступал за «чистые» научные исследования, в то время как STA лоббировало «коммерческое» применение РН и ИСЗ. К концу 1960-х гг. противоборство достигло пика. Рассуждения о том, что Японии необходима «лишь одна» гибкая организация, способная поддержать космические разработки на высоком уровне, ни к чему конкретному не привели. По мнению коллег Итокавы, «премьер-министр хотел бы иметь объединенную организацию типа NASA, но руководитель каждого из «космических» министерств непременно желал стать ее главой…».
В результате, правительство Японии решило институционализировать сей «философский спор», разделив космическую программу на две части. ISAS продолжил «научные» исследования, а на базе STA (в 1966 г. преобразованном в Национальный центр по освоению космоса NSDC[24] — National Space Development Center) в октябре 1969 г. было создано «многопрофильное» Национальное агентство по космическим разработкам NASDA (National Aviation and Space Development Agency).
Ракета Lambda-3H на пусковой установке. В рамках Международного года спокойного Солнца (1964–1965 гг.) эти потомки «карандашей» достигали высоты ~1500 км (Фото JAXA).
В 1962 г. фирма Nissan начала работу по РДТТ тягой 40 тс для новой большой ракеты Lambda. Трехступенчатая комбинация на базе этого мощного двигателя и ракеты Карра — Lambda-3 — могла нести ПГ в 100 кг на высоту до 1000 км. Пусковые сооружения для ракет этой серии были построены в Космическом центре Токийского университета в Утиноура (префектура Кагосима, о. Кюсю). Первая Lambda стартовала отсюда в июле 1964 г.
Ракеты серии «Каппа» и «Лямбда» позволили стране принять участие в программе Международного года спокойного Солнца (1964-65 гг.). Летом 1966 г. аппаратура, установленная на борту «Лямбды-3Н-2», достигшей высоты 1800 км, впервые в Японии провела исследования радиационных поясов.
А специалисты ISAS уже наметили новую амбициозную цель: спутник Земли! В перспективной программе, разработанной Национальным советом по космосу в 1966 г., предусматривалось запустить первый опытный ИСЗ уже в 1967 г., а к 1970 г. вывести на околоземную орбиту целых девять (!) научных спутников.
Отметим: интерес Японии к космонавтике не был случаен — безграничный «новый океан» стал для страны символом возрождения и могущества на новом — послевоенном — этапе истории. Это необычайно важно для духа нации, особенно на Востоке. «Путь в космос раскинулся широким плодородным полем для тех, кто будет его возделывать. Сегодня в Японии масса молодых ученых, которые пойдут этим путем. Для наших детей космонавтика — ключ к мечте, вдохновляющей их любопытство и тягу к приключениям. И пока это так — наше стремление в космос будет возрождаться вновь и вновь…».
Для реализации первых этапов национальной космической программы предназначалась «экспериментальная» РН Lambda-4S.
Еще в 1960 г. Хидео Итокава и Риедзиро Акиба (Ryojiro Akiba) подготовили документ, в котором обосновали возможность запуска малого спутника многоступенчатой зондирующей ракетой. Методика космического старта предполагала запуск неуправляемой суборбитальной ракеты, использующей специализированный двигатель в апогее траектории для довыведения на орбиту.
Четырехступенчатая твердотопливная ракета-носитель Lambda-4S: 1 — сбрасываемый головной обтекатель; 2 — ПГ; 3 — сферический РДТТ четвертой ступени; 4 — система управления; 5 — РДТТ третьей ступени; 6 — РДТТ второй ступени; 7 — РДТТ первой ступени; 8 — стартовые твердотопливные ускорители; 9 — аэродинамические стабилизаторы.
Таким образом первый японский космический носитель был, по сути, зондирующей ракетой — «переростком», все четыре ступени и два навесных СТУ которой были «классическими» неуправляемыми РДТТ. Аэродинамические стабилизаторы обеспечивали устойчивость первой ступени, закрутка — второй и третьей. Лишь для управления четвертой ступенью применялся блок инерциальной навигации, который вместе с управляющими микро-ЖРД располагался в цилиндрической проставке между третьей и четвертой ступенями. Lambda-4S была, по-видимому, самой простой (чего, правда, нельзя сказать о стоимости) космической РН в мире: при стартовой массе 9480 кг она была способна вывести на орбиту спутник массой до 26 кг.
Более 30 промышленных предприятий Японии были заняты в производстве ракет и оборудования для их пусков. Основными участниками проектов ISAS являлись такие «киты» индустрии, как Nissan Motor, Mitsubishi Heavy Industries, Matsushita Communication Industrial, Meisei Electric, Japan Aviation Electronics Industry, Nippon Electric и др.
Тем не менее, японская космонавтика «рождалась в муках». 26 сентября 1966 г. стартовала первая «Лямбда-4S» (L-4S-1). Первые три ступени отработали гладко, но система управления дала сбой и послала четвертую ступень «в молоко».
При запуске 20 декабря 1966 г. (L-4S-2) не включилась четвертая ступень. Еще хуже прошел пуск 13 апреля 1967 г. (L-4S-3). На этот раз отказала третья ступень.
Хидео Итокава и его коллегии «пребывали в глубоком пессимизме».
Три подряд аварии означали, что ISAS может не справиться с задачей запуска первого японского спутника к 1968 г. Чувствуя свою «неспособность противостоять событиям», Хидео Итокава ушел из ISAS и космической программы в марте 1967 г. Он переключился на проект подводного нефтехранилища емкостью в миллиард литров.
Следует отметить, что, помимо «доморощенных» ракетно-космических технологий, японские специалисты практиковали опыт импорта доступных зарубежных разработок. Если институту ISAS удалось наладить создание довольно мощных (на тот период времени) РДТТ, осуществлять пуски зондирующих ракет Карра и Lambda, продвинуться в разработке перспективного носителя Mu, развернуть эксплуатацию Космического центра Кагосима и стендового комплекса в Носиро, то центр NSDC приступил к созданию ракет Q и N с жидкостными ступенями (на базе технологии РН Delta, закупленной в США) и строительству нового полигона — Космического центра Танегасима на одноименном острове.
В 1968 финансовом году NSDC получил третью часть бюджета, предназначенного на «японский космос» (бюджет ISAS уменьшился с 11,109 млн $ в 1967 ф.г. до 9,885 млн $ в 1968 ф.г.; в свою очередь, бюджет NSDC вырос за тот же период с 3,851 до 8,358 млн $). Третьей организацией, занимающейся космосом, была Научно-исследовательская лаборатория радио (бюджет 2,011 млн$ в 1968 ф. г), которая участвовала в разработке ИСЗ для исследования ионосферы[25].
Вследствие секвестра бюджета активность ISAS была снижена. Ко всем неприятностям добавились требования японских рыбаков запретить пуски ракет из Утиноуры, и интенсивность функционирования Космического центра Кагосима пришлось резко ограничить.
Отсюда «Страна восходящего солнца» шагнула в космос (строительство стартовой площадки РН Lambda-4) (Фото JAXA).
Четвертая попытка космического старта ракеты «Лямбда-4S» состоялась 22 сентября 1969 г. — через полтора года после третьей. На сей раз все шло хорошо до окончания работы третьей ступени. Она штатно отделилась, но — в результате догорания остатков топлива — произошло ее соударение с отсеком СУ четвертой ступени. Потеря ориентации, гибель…
…11 февраля 1970 г. Мощный кран с направляющей стрелой поднял L-4S-5 на угол 63° над тихоокеанским горизонтом. Запустились двигатель первой ступени и два навесных СТУ. С более чем шестикратной перегрузкой ракета устремилась в небо. Через 7,4 сек (скорость М=1,5) ускорители прекратили работу и через 1,5 сек отделились.
Через 29 сек после запуска, на высоте 15 км, закончилось топливо в первой ступени. После ее отделения включились РДТТ закрутки, установленные в верхней части второй ступени. Стабилизация вращением (на уровне 2,5 об/сек) поддерживалась перекошенными на 4° стабилизаторами до тех пор, пока ракета не вышла из плотных слоев атмосферы.
Через 37 сек после старта запустилась вторая ступень. Она работала почти 40 сек, подняв ракету на высоту 58 км и более чем удвоив ее скорость (с 0,98 до 2,5 км/с). После пассивного полета в течение 23 сек до высоты 87 км отделились половинки ГО, защищающего спутник от атмосферного нагрева. Еще через две секунды разрывные болты разъединили, а пружины развели вторую и третью ступени.
Через 1 мин 43 сек после запуска включилась третья ступень. Она проработала 27 сек и увеличила скорость до 4,6 км/с (число М=15).
С высоты 141 км начался пассивный полет по баллистической траектории. Через 2,5 мин после пуска отделилась третья ступень (тормозные РДТТ увели ее от отсека управления, исключив тем самым столкновение, которое привело к аварии в предыдущем полете). Через 6 сек пара РДТТ отработала программный импульс противовращения. Лишь после этого система инерциальной навигации стала впервые участвовать в управлении носителем. По сигналам от гироскопов крошечные микро-ЖРД на перекиси водорода окончательно остановили закрутку и наклонили ступень по тангажу. На 4-й мин полета они же начали новую закрутку, удерживая ее на уровне 3 об/сек. Отсек управления и четвертая ступень еще 3 мин поднимались до апогея траектории. Момент включения РДТТ программировался бортовым таймером и корректировался по радиокомандам с Земли.
Через 7 мин 57 сек после взлета, на высоте 325 км, четвертая ступень, отделив отсек управления, запустилась. За 32 сек работы она разогналась до скорости 8,13 км/с — и вышла на орбиту ИСЗ. Победа!
Запуск Lambda-4S-5 11 февраля 1970 г. Через 8 мин 29 сек Япония станет четвертой державой «Большого космического клуба» (Фото JAXA).
Установка ГО на спутник Ohsumi. Хорошо виден сферический РДТТ четвертой ступени (Фото JAXA).
Подготовка к первому запуску «рабочего» носителя Mu-4S (Фото JAXA).
Первый японский спутник — Ohsumi — нарекли в честь полуострова, с которого он был запущен. КА представлял собой усеченный конус высотой 0,447 м, диаметром основания 0,304 м и включал термометры, акселерометры и передатчики общей массой 9 кг. Ohsumi вышел на высокоэллиптическую орбиту с параметрами:
— наклонение— 31°;
— перигей — 337 км;
— апогей — 5151 км;
— период обращения — 144,6 мин.
Ушедший в отставку Хидео Итокава, который в это время «по нефтяным делам» был далеко от Японии — пересекал на автомобиле пустыню на границе Кувейта и Саудовской Аравии — услышал новость по радио. Он остановил машину, вышел и, подняв глаза к небу, заплакал. Мечта его жизни осуществилась!
… Отработавшая четвертая ступень своей остаточной теплотой подняла температуру в приборном отсеке ИСЗ выше 70 °C и тем самым сократила ресурс батарей электропитания вдвое.
Ohsumi не сделал никаких открытий: он был не научным КА, а всего лишь телеметрическим контейнером ракеты. «Лямбду-4S» не предполагалось далее эксплуатировать в качестве космической РН, и «Осуми» стал первым и последним спутником, запущенным ею. С построенного неподалеку нового комплекса готовились запуски более мощного носителя серии «Мю».
Работы по РН этой серии начались в ISAS в 1963 г. Первый вариант Mu-4S — комбинация четырех специально созданных РДТТ — был значительно мощнее «Лямбды». Носитель не имел автономной бортовой системы управления — полет ракеты шел по радиокомандам с Земли. Двигатели нижних ступеней оснащались системой управления вектором тяги, верхняя ступень стабилизировалась закруткой. Оторвать ракету от земли помогали восемь СТУ, испытанных еще на «Лямбде».
ЛКИ ракеты Mu с «живой» первой ступенью начались 31 октября 1966 г. Через три года суборбитальный полет совершил трехступенчатый прототип.
Первая попытка орбитального запуска Mu-4S-1 была предпринята 25 января 1970 г., т. е. еще до старта «Лямбды-4S-5», но окончилась неудачей — не включился двигатель четвертой ступени. Погиб аппарат MS-F1 (или «Научный спутник № 1»), который нес три прибора для исследования ионосферы, два приемника солнечного излучения и блок датчиков энергичных частиц. К счастью, имелся его дублер. Перед запуском этого второго экземпляра ISAS решил провести дополнительные эксплуатационные испытания носителя Mu-4S с технологическим ПГ MS-T1. 16 февраля 1971 г. Mu-4S-2 вывел этот аппарат на орбиту высотой ~1000 км. Спутник получил название «Tansei» или «Светло-синий» (цвет здания Токийского университета).
Наконец, 28 сентября 1971 г. аппарат MS-F2 массой 65 кг стал первым японским научным спутником (получил после выхода на орбиту название «Shinsei» или «Новая Звезда»). После третьего успешного запуска 19 августа 1972 г. Mu-4S была заменена более мощным вариантом Mu-3С. Вслед за ним появились ракеты Mu-3Н и Mu-3S. Каждый вариант представлял собой последовательное усовершенствование предыдущих: росла масса ПГ и точность его выведения на орбиту. По мере появления новых модификаций твердотопливных РН возможности ISAS выросли настолько, что в 1980-1990-х годах позволили институту — совершенно независимо от NASDA — запустить первые японские межпланетные аппараты к комете Галлея и Луне.
… А ракетчик № 1 «Страны восходящего солнца» Хидео Итокава написал «персональную историю в стихотворной форме», которая была опубликована в серии статей газетой Nikkei Shimbun 10 ноября — 6 декабря 1974 г. Как гласит японская поговорка, «все содеянное тобой — к тебе же и вернется»…
Китайская Народная Республика: «Алеет восток».
Старт первого китайского космонавта Ян Ливэя сделал КНР третьей страной — после России/СССР и США — овладевшей технологией пилотируемых полетов в космос. В этой связи небезынтересно напомнить, что Китай вступил в «космический клуб» пятым — в 1970 г., после СССР, США, Франции и Японии.
В пору «великой дружбы» СССР помог китайцам организовать производство баллистической ракеты Р-2. Кроме того, Н.С.Хрущев передал «в дар» Мао Цзэдуну экземпляр Р-5М.
1 сентября 1960 г. с полигона Цзюцюань стартовала первая ракета Р-2, поставленная из СССР. А через два месяца, 5 ноября, впервые совершила полет уже «Дун Фэн-1» (Dong Feng-1, DF-1, «Ветер с востока-1») — освоенная китайцами копия Р-2 («модель 1059»).
Развитие линии Р-2/Р-5 — изделие DF-2, классифицируемое как баллистическая ракета среднего радиуса действия (китайцы попытались восстановить всю технологию Р-5М по единственному переданному им образцу). Улучшенный вариант ракеты имел дальность до 1200 км (как у советского прототипа); смешанная радиоинерциальная система управления была заменена чисто инерциальной.
DF-2 стала единственной китайской ракетой, запущенной с реальной ядерной боеголовкой: 27 октября 1966 г., стартовав из Цзюцюаня, ракета доставила боезаряд в 20 кТ на атомный полигон Лоб-Нор.
Ни в коем случае не умаляя роли китайских специалистов, необходимо отметить инициирующий «русский след» в появлении и становлении китайской ракетной техники. Передача КНР документации и образцов ракет, строительство и оснащение заводов по их производству, подготовка в советских ВУЗах китайских инженеров и ученых — вот тот трамплин, с которого Китай начал самостоятельный «путь в небо».
Следует отметить, что в свое время китайская Академия наук получила от советских коллег предложение участвовать в сопровождении полета спутника, и в КНР была развернута сеть из 12 наземных станций.
Достижения китайской космонавтики неотделимы от имени Цянь Сюэсэня (Qian Xuesen) — личности весьма загадочной и, как сейчас говорят, харизматической.
Цянь родился в 1911 г. в городе Ханьчжоу, в 1935 г. поехал в США получать образование. Учился в Массачусетском технологическом (магистр) и Калифорнийском технологическом (доктор аэронавтики) институтах. Его научным руководителем был известный специалист в области аэрогидродинамики Теодор фон Карман. Выказав блестящие способности, Цянь быстро вырос до профессора Калифорнийского технологического института, участвуя при этом в работах лаборатории JPL и фирмы Aerojet. В конце Второй мировой войны Цянь в составе группы экспертов отправился в Германию на поиск «нужных людей и ценных бумаг». В мае 1945 г. именно Цянь Сюэсэнь допрашивал Вернера фон Брауна и других сотрудников ракетного центра Пенемюнде.
После возвращения в Пасадену Цянь (между прочим, полковник ВВС) выпустил обзор «Реактивное движение» (Jet Propulsion) объемом ~800 страниц, ставший «технической библией» послевоенной авиационной и ракетной промышленности США.
В 1947 г. Цянь женится на дочери одного из высших руководителей чанкайшистской партии. Перспективы его карьеры выглядят блестяще.
Однако жизнь спутала все карты. После провозглашения КНР и образования мирового социалистического лагеря в США началась «охота на ведьм». Цянь Сюэсэнь, как и другие выходцы из «прокоммунистических» стран, подвергся многочисленным и унизительным проверкам на лояльность. В 1950 г. ему инкриминировали пособничество коммунистической партии и отстранили от работ. Пять лет он фактически находился под домашним арестом. На женевских переговорах по возвращению американских военнопленных — участников корейской войны освобождение Цяня стало одним из условий китайцев. Президент Эйзенхауэр согласился на сделку, и 17 сентября 1955 г. Цянь Сюэсэнь выехал из Соединенных Штатов. По возращению в Китай его ждал «бамбуковый железный занавес» и тайное государственное задание: строить ракеты для народной республики. 17 февраля 1956 г. Цянь Сюэсэнь представил в Госсовет КНР «Проект создания национальной авиационной и оборонной промышленности». А уже 26 мая была основана Пятая академия министерства обороны [по разработке баллистических ракет]. По предложению Цяня, которого назначили ее руководителем, с 1 июня 1956 г. началось строительство ракетного полигона в Цзюцюане, на северо-западе провинции Ганьсу, — первого китайского космодрома, будущего Центра спутниковых запусков. Именно с этих дней ведется отсчет истории ракетно-космической отрасли КНР.
В мае 1958 г., под сильным впечатлением от мировой реакции на первые спутники, Мао Цзэдун призвал соотечественников запустить собственный ИСЗ. Центральный Комитет Коммунистической партии Китая (КПК) принял в августе того же года решение по «Проекту 581». В рамках проекта предполагалось, что сначала КНР получит опыт применения высотных исследовательских ракет, затем запустит прототип спутника, а уж потом сможет развернуть «широкую и эффективную программу практического применения космических аппаратов».
История КНР в лицах: «великий кормчий» Мао Цзэдун (справа) и «главный ракетчик» Цянь Сюэсэнь. Они довольны — китайскому космосу быть!
За ракеты отвечала Пятая академия, за их научную «начинку», а также сооружение наземной сети слежения — китайская АН. В структуре последней были созданы три специализированных института — НИИ № 1001 по основным вопросам разработки ракет и спутников, НИИ № 1 по вопросам управления и контроля, НИИ № 2 по разработке научных и измерительных приборов.
После перевода НИИ № 1001 в Шанхай он получил наименование «Шанхайского проектного электромеханического института» и сконцентрировался на разработке ракет типа Т-7 (на базе советской МР-12). 19 февраля 1960 г. прототип Т-7М успешно стартовал с о-ва Лаоган. Вариант Т-7А был способен поднимать 40 кг на высоту 100 км. Пик программы исследовательских ракет пришелся на 1966 г. По предложению НИИ биофизики, ракеты серии T-7A-S подняли в стратосферу двух собачек — Сяо Бао («Леопардик», 14.07.1966) и Шань Шань («Коралл», 28.07.1966).
Ракета средней дальности DF-3 — прототип первой ступени спутниковой РН.
В мае 1964 г. по предложению Цянь Сюэсэня в «Шанхайском проектном» была образована группа по разработке спутника. В январе 1965 г. он представил программу создания национального ИСЗ Центральному комитету КПК. Она была одобрена и получила новое обозначение — «Проект 651».
В этот период в КНР проходила крупная реорганизация научно-исследовательской инфраструктуры страны, в ходе которой многие соответствующие учреждения переходили под контроль военных. На базе Пятой академии было образовано Седьмое министерство машиностроения. «Шанхайский проектный» переехал в Пекин и стал «Проектным институтом 8–1» нового министерства. Для ускорения работ был срочно создан «Пекинский институт проектирования систем космических аппаратов», который сразу же включился в разработку ракеты-носителя «Чан Чжэн-1» (CZ-1[26]).
В связи с переподчинением Шанхайского проектного института Академия наук КНР сочла целесообразным основать новый институт по разработке спутника. По названию проекта он получил наименование НИИ № 651. Явно с одобрения руководства страны институт принял решение, чтобы будущий спутник передавал с орбиты мелодию гимна «Алеет Восток».
В марте 1966 г. по инициативе «великого кормчего» началась так называемая «культурная революция». Интеллектуальную элиту страны «перековывали» в лагерях трудового воспитания и «коммунах», или попросту уничтожали. В одночасье Цянь Сюэсэнь из главного разработчика ракет превратился в простого служащего машиностроительной фабрики.
В этой ситуации прагматичный премьер-министр КНР Чжоу Эньлай предпринял дальновидный шаг. Он переподчинил «Проект 651» министерству обороны: сюда «революционному террору» вход был воспрещен. Путем слияния НИИ № 651 и Проектного института 8–1 была образована Китайская академия космической технологии, на пост первого президента которой был «приглашен» срочно реабилитированный Цянь Сюэсэнь.
Следует отметить, что хотя АН КНР и далее участвовала в разработке спутника, ее роль свелась, в основном, к строительству наземных станций слежения (было образовано КБ № 701, на базе которого впоследствии сформировалась общекитайская сеть станций сопровождения).
Космическая ракета-носитель разрабатывалась на базе МБР «ограниченной[27] дальности» DF-4 (расчетный радиус стрельбы — около 4000 км), проектирование которой началось в 1965 г.
Характеризуя китайскую конструкторскую школу, отметим, что эта ракета (как и многие другие образцы ракетно-космической техники КНР) была своеобразной компиляцией технических решений, свойственных советским, американским и отчасти европейским разработкам начала 1960-х годов[28].
МБР «ограниченной дальности» DF-4 — база спутникового носителя.
Концептуально первая ступень DF-4 напоминала отечественные ракеты Р-12/Р-14 и оснащалась четырехкамерным ЖРД с неподвижными соплами. Каждая камера имела автономный ТНА для подачи компонентов топлива. Расчетная балансировка ракеты достигалась за счет аэродинамических стабилизаторов, а управление — путем отклонения газовых рулей. Разделение ступеней — по «советскому» принципу: ЖРД второй ступени включается в конце работы двигателя первой; газы истекают через ферменный межступенчатый переходник, расталкивая ступени (тормозят первую и разгоняют вторую).
Вторая ступень по концепции близка верхней ступени американской МБР Titan 2. Китайцы применили однокамерный ЖРД с сопловым насадком большой степени расширения. Последний охлаждался частью относительно «холодного» выхлопа ТНА. Другая часть выхлопа перепускалась через управляющие рулевые сопла.
Двигатели DF-4 были разработаны НИИ ракетных двигателей на жидком топливе и выпускались Заводом общей сборки ракет. Работами по проекту в НИИ руководили Дэнь Синьминь (Den Xinmin), Ma Цзосинь (Ma Zuoxin) и Чжан Гуйтянь (Zhang Guitian).
Спутниковый носитель был готов еще до начала летных испытаний DF-4. Его первая и вторая ступени были фактически аналогичны DF-4[29]. Разработка твердотопливной третьей ступени была совершенно новой технологией для КНР — двигатель GF-02 имел диаметр 770 мм, длину 4 м и был снаряжен шашкой твердого топлива массой 1,8 т.
Работа над РДТТ началась в 1965 г. в Исследовательской академии [ракетных] двигателей на твердом топливе под руководством Ян Наньшэна (Yang Nansheng). Первый образец двигателя был собран и испытан 26 января 1968 г. на стенде, имитирующем вращение ступени с частотой 180 об/мин для ее стабилизации. На тридцатой секунде GF-02 взорвался. Погибли несколько инженеров и техников. После доработки РДТТ в 1968-70 гг. проведено 19 огневых стендовых испытаний двигателя (все успешные).
Схема полета китайской РН имела следующие особенности.
После отсечки ЖРД второй ступени носитель совершает пассивный полет продолжительностью более 200 сек. Управление и стабилизация — газореактивной системой, использующей остатки жидкого топлива маршевой ДУ. После отделения второй ступени — третья вместе со спутником закручивается до 180 об/мин специализированными РДТТ, чтобы сохранить устойчивость на стадии работы основного двигателя.
По своим удельным энерго-массовым характеристикам CZ-1 превосходил первые американские (Juno I и Vanguard) и западноевропейские (Diamant и Black Arrow) РН — он был способен вывести ПГ массой 300 кг на орбиту высотой 440 км и наклонением 70°, но значительно уступал аналогичным по классу советским двухступенчатым ракетам «Космос-2» и -3», разработанным в тот же период.
К началу 1968 г. был готов прототип первого спутника массой 170 кг — тело вращения, близкое к сфере, диаметром около метра.
В мае 1969 г. были проведены четыре стендовых огневых испытания собранной первой ступени, а в июне — второй и третьей ступеней. Окончательная сборка началась в июле; в сентябре была сдана в эксплуатацию наземная система слежения за спутником.
Осенью 1969 г. «Проект 651» вступил в решающую фазу.
По официальной китайской версии, перед запуском ИСЗ было решено пустить носитель «Чан Чжэн-1» по баллистической траектории, чтобы подтвердить работоспособность первой и второй ступеней. Этот старт в январе 1970 г. был также частью программы испытаний МБР DF-4.
Первый летный космический носитель, а также два экземпляра спутника DFH-1 прибыли 1 апреля 1970 г. поездом на полигон Цзюцюань. Среди специалистов был Ци Фажэнь (Qi Faren)[30], руководитель группы разработчиков DFH-1.
Схема ракеты-носителя CZ-1: 1 — спутник DFH-1; 2 — головной обтекатель; 3 — РДТТ 3-й ступени; 4 — приборный отсек; 5 — баки 2-й ступени; 6 — ЖРД 2-й ступени; 7 — ферменный межступенчатый переходник; 8 — баки 1-й ступени; 9 — ЖРД 1-й ступени; 10 — аэродинамические стабилизаторы (4 шт.); 11 — газовые рули (4 шт.).
Первый китайский носитель CZ-1 готовится к полету в космос. Канонический кинокадр (Фото Xinhua).
На следующий день премьер-министр Чжоу Эньлай созвал специальное заседание правительства, чтобы получить заключительные доклады о состоянии спутника и ракеты. Там присутствовал и Ци Фажэнь. В своем интервью, данном в декабре 1999 г. гонконгскому еженедельнику «Ячжоу Чжоукань», он вспоминает: «Чжоу Эньлай спросил, будет ли DFH-1 передавать мелодию из космоса? Я ответил: «Мы сделали все, что могли и должны были сделать». В тот момент я не осмеливался говорить о 100 %-ной надежности».
17 апреля носитель и спутник перевезли на стартовую позицию.
Утром 24 апреля 1970 г. нижние ступени носителя были заправлены компонентами топлива. За восемь часов до старта DFH-1 установили на твердотопливную третью ступень РН.
Исторический запуск состоялся вечером того же дня, в 21:35 по пекинскому времени. А еще через тринадцать минут по Центру управления полетом разнеслась главная новость: «Спутник и ракетная ступень разделились, спутник вышел на орбиту!».
Третья ступень CZ-1 тоже вышла на орбиту. Благодаря «юбке наблюдения»[31], увеличившей ее светимость в 2–3 раза, она хорошо различалась на ночном небосводе. Блеск ИСЗ был гораздо слабее — в пределах 5–8 звездной величины, поэтому его можно было наблюдать лишь на очень темных участках неба.
Официальное сообщение о запуске было передано только через 23 часа после старта, 25 апреля. Кроме параметров орбиты и массы спутника, никакой другой информации не приводилось. Лишь десять лет спустя были выпущены изображения ИСЗ, названного «Дунфанхун-1» в честь мелодии, которую он передавал.
Спутник продемонстрировал всему миру, что КНР способна разрабатывать и запускать собственные КА без посторонней помощи.
Вспоминая свое участие в проекте DFH-1, Ци Фажень, которому тогда было 37 лет, говорит: «День 24 апреля 1970 г. стал самым счастливым в моей жизни. Слова «старт… орбита достигнута… мелодия принимается…» все еще звучат в моих ушах».
«Дунфанхун» стал самым тяжелым из «первых ИСЗ», выведенных в космос до конца 1990 г. Его масса равнялась суммарной массе первых спутников, запущенных Советским Союзом, Соединенными Штатами, Францией и Японией.
Второй — и последний — раз ракета «Чан Чжэн-1» применялась для выведения на орбиту спутника «Шицзянь-1» («Практика-1»).
А вот что рассказывает о первом китайском ИСЗ Свен Гран (Sven Grahn), вице-президент Шведской космической корпорации, посетивший в 1988 году предприятия ракетно-космической отрасли КНР:
«…Запуск первого китайского спутника стал значительным событием в истории космонавтики. Большинство из нас оценивали DFH-1 как экспериментальный ИСЗ с простым телеметрическим передатчиком, который передавал также мелодию «Алеет Восток». Однако это было не совсем так.
Характерной особенностью первого и второго спутников был их весьма запоминающийся внешний вид, четыре торчащие перпендикулярно сфероидальному корпусу штыревые антенны и пояс диполей, расположенных в маленьких полостях вокруг «экватора» КА. Коаксиальные кабели, размещенные позади диполей, связывали их в некую сеть. Кабели шли в герметичный контейнер с оборудованием (цилиндр диаметром 0,5 м и длиной 0,8 м), установленный в центральной части спутника. Никаких научных датчиков видно не было.
«Похоже, два этих первых аппарата использовались для спутниковой связи…», — заметил я одному из высокопоставленных чиновников Китайской академии космической технологии, сопровождавшему нас.
«Да, — подтвердил он. — Мы не стали бы запускать спутники только для того, чтобы передавать мелодию из космоса…».
Поразительно, но первые китайские ИСЗ были очень похожи (как внешне, так и по компоновке) на ранние американские экспериментальные спутники связи Telstar 1! Нельзя сказать, что они были целиком скопированы, но то, что китайцы взяли за прототип спутники США — совершенно однозначно…».
Так «был ли мальчик»? То бишь являлся ли DFH-1 полноценным спутником связи? «Темное прошлое» об этом умалчивает…
Историческое фото: установка второго китайского спутника на третью ступень РН. Ватники и ушанки на инженерах и рабочих — яркая иллюстрация того, что «не боги горшки обжигают» (Фото из книги China in Space).
Такой увидел панораму стартовой позиции CZ-1 вице-президент Шведской космической корпорации Свен Гран.
МБР DF-4 были сданы в эксплуатацию лишь в 1980 г. и развернуты в западной части КНР у населенных пунктов Цайдам (Qaidam), Дэлинха (Delingha), Тундао (Tongdao), Суньдянь (Sundian) и Сяо-Цайдань (Xiao Qaidan). Любопытен способ базирования: ракеты хранятся в естественных и искусственно созданных пещерах, а для запуска вывозятся на стартовые столы, расположенные на поверхности.
Эксперты полагают, что произведено примерно 20–35 этих МБР. В 1985–1995 гг. в рамках проекта «Великая Стена» проведена модернизация DF-4, направленная на повышение точности и упрощение процедур предстартовой подготовки.
Через 15 лет после первых пусков «Чан Чжэн-1», в 1985 г., китайцы предложили усовершенствованные варианты этой РН для коммерческих запусков ИСЗ на низкую околоземную орбиту.
С полетом Ян Ливэя в 2003 г. сбылась мечта Цянь Сюэсэня — 92-летний «отец китайской космонавтики» смог собственными глазами увидеть триумфальные итоги своего труда.
Следует отдать должное руководителям китайской аэрокосмической индустрии. Трезво оценивая возможности и потенциал страны, они всячески избегают каких бы то ни было проявлений пресловутой «космической гонки» (во всяком случае, «на словах»). Действительно, куда спешить? Для КНР вполне подходит надежный принцип «цань ши», который император древнего Китая Цинь Шихуан формулировал следующим образом: «Занимать постепенно пространство других, как шелковичный червь поедает листья…».
Индия: через тернии — к звездам.
Ракеты появились в Индии несколько сотен лет назад. Европейцы впервые столкнулись с ними в 1792 г. во время сражения при Саренгапатаме (Seringapatam), когда отряды под командованием султана Типпу (Tippoo Sultaun) выпустили по британской армии множество ракет. Индийские боевые ракеты представляли собой железные трубы, привязанные к бамбуковым шестам-направляющим, и имели дальность стрельбы порядка километра.
Индия была «самым драгоценным камнем» в короне британской империи вплоть до 1947 г., когда ей удалось вырваться из колониальных пут. Национальному правительству досталось непростое наследство. В 1948, 1965 и 1971 гг. из-за проблемы Кашмира[32] между Индией и Пакистаном вспыхивали войны, в результате две страны и поныне остаются ожесточенными врагами. Внешние конфликты спровоцировали гонку вооружений, которая, в свою очередь, стимулировала интерес к ракетным технологиям.
Первый практический опыт индусы получили 21 ноября 1963 г., когда специалисты NASA запустили с индийской территории малую высотную ракету Nike Apache американского производства.
«Мы ждали прибытия [индийского] полезного груза и вдруг увидели парня, который ехал по проселочной дороге на велосипеде, — вспоминает ветеран NASA, присутствовавший на этом запуске. — Он вез ПГ на багажнике…».
Фото с сайта президента Индии.
Разыгрывавшие «индийскую карту» США, Англия, Франция и Советский Союз в последующие 12 лет запустили со вновь организованной станции пуска зондирующих ракет TERLS (Thumba Equatorial Rocket Launching Station) в Тхумбе более 350 своих изделий.
Этот опыт не пропал даром. Был создан Центр космической науки и технологии SSTC (Space Science and Technology Center), который начал разработку аналогичных индийских ракет. Первой была спроектирована и изготовлена твердотопливная ракета диаметром 75 мм на базе шашки кордитного пороха звездообразного сечения.
Зондирующие ракеты RH-75, RH-100, RH-125, RH-300 (на фото) производились в Индии серийно (Фото ISRO).
20 ноября 1967 г. Rohini RH-75 была запущена с ПГ в 1 кг на высоту 9 км. За ней последовали RH-100, RH-125, RH-300 и, наконец, RH-560 в 1974 г.
«Индию не следует считать обычной бедной страной, имеющей массу проблем, но надо считать страной, которая изо всех своих сил и весьма героически стремится решить эти проблемы. Индия стоит за независимость взглядов и действий и желает пользоваться преимуществами, которые дают наука и техника,» — эта четкая и твердая позиция, высказанная премьер-министром Индирой Ганди (Indira Gandhi), позволила «Циолковскому Индии» — Викраму Сарабхаи (Vikram Sarabhai) — выдвинуть программу создания национальной ракетно-космической индустрии.
Упор был сделан на решение практических задач социально-экономического развития: ликвидацию неграмотности через спутниковые образовательные программы, развитие связи, создание спутниковой службы прогноза погоды, формирование кадастра водных ресурсов и т. п. Естественно, львиная доля «ракетного опыта» нашла применение и в военной области.
В 1962 г. был учрежден Индийский национальный комитет по космическим исследованиям INCOSPAR (Indian National Committee for Space Research) под контролем Департамента по атомной энергии, того самого, который руководил разработкой ядерного оружия[33] в стране. В 1969 г. INCOSPAR заменила Индийская организация по космическим исследованиям ISRO (Indian Space Research Organization). Руководимая доктором Сарабхаи, ISRO стала главной движущей силой национальной космической программы.
В августе 1972 г. были сформулированы ее основные положения: «В космических областях для нас важно быть в курсе последних достижений и развиваться в ногу со временем, т. к. мы имеем возможность быть среди передовых стран мира в этой области. У нас есть людские ресурсы и сеть предприятий. Мы все еще должны полагаться на импорт готовых изделий, но нет причин, почему мы не должны нацеливаться на полную самостоятельность в космической технике.
Сотрудничество с зарубежными странами должно всячески поощряться»…
Первые индийские спутники Ariabhata и Bhaskara (на фото) были запущены советскими ракетами с космодрома Капустин Яр (Фото ISRO).
19 апреля 1975 г. Республика Индия с помощью СССР «шагнула в космос»: первый индийский спутник «Ариабхата» (Ariabhata) был запущен с советского космодрома Капустин Яр ракетой-носителем «Космос-3»(11К65).
Что касается собственных РН, то еще в 1973 г. в ISRO началась разработка легкого носителя.
Способный индийский студент Абдул Калам (Abdul Kalam), учась в США, получил доступ к техническим отчетам по проекту РН Scout. Этот полностью твердотопливный носитель фактически стал прототипом первой индийской космической РН SLV-3 (Satellite Launche Vehicle)[34].
Четырехступенчатая твердотопливная ракета стартовой массой около 17 т должна была вывести ПГ массой 40 кг на круговую орбиту высотой ~400 км.
Органы управления первой ступени — газовые рули, второй — двухкомпонентные ЖРД на красной дымящей азотной кислоте и гидразине, третьей — однокомпонентные ЖРД на гидразине. Четвертая ступень с ПГ стабилизируется закруткой. Корпус первой ступени собран из трех секций (из технологических соображений); корпуса остальных ступеней цельные.
Согласно циклограмме полета, после окончания работы РДТТ первой и второй ступеней (на высоте 58 км) следует участок пассивного полета до 88,5 км, где включается двигатель третьей ступени. Он прекращает работу на высоте 142,5 км, после чего следует еще один участок пассивного полета до ~300 км (высота перигея расчетной орбиты). Стабилизация на этом участке обеспечивается управляющими ЖРД третьей ступени. В перигее включается РДТТ четвертой ступени, который переводит ПГ на расчетную эллиптическую орбиту 300 х 885 км. Спутник отделяется на 433-й секунде полета.
Директором проекта первой национальной РН был назначен А.Калам. Вместе с ним основными творцами SLV-3 считаются В.Говарикет (V.R. Gowariket), М.Куруп (M.R. Kurup) и А.Мутхунаягам (A.E. Muthunayagam).
Спутник Rohini на последней ступени РН SLV-3 (Фото ISRO).
Вывоз ракеты SLV-3 на стартовую позицию (Фото ISRO).
На создание SLV-3 было потрачено 204,9 млн рупий. Более 85 % компонентов РН изготовлено в Индии. Положительную роль в динамике проекта сыграло закрытие в начале 1970-х годов ракетного полигона Вумера в Австралии. Индусы по цене металлолома купили у европейской организации ELDO стенды и пусковые установки, которые стали основой стартовых комплексов полигона SHAR (Sriharikota Launching Range) на о. Шрихарикота.
Самыми «узкими» местами проекта были РДТТ первой и четвертой ступеней, от уровня характеристик и совершенства которых во многом зависел успех РН. В частности, четвертая ступень, создаваемая с применением композиционных материалов, требовала от индийской ракетной индустрии буквально технологического «скачка».
К 1975 г. на зондирующих ракетах были отработаны и сертифицированы элементы основных систем РН; в 1976 г. совершил суборбитальный полет прототип.
10 августа 1979 г. с полигона SHAR состоялся первый запуск космической ракеты (бортовой номер SLV-3-E-01). За 8 мин до старта компьютер остановил обратный отсчет: упало давление в баке окислителя реактивной системы управления (РСУ), которая обеспечивала ориентацию РН после отделения первой ступени.
Схема первой индийской ракеты-носителя SLV-3: 1 — головной обтекатель; 2 — спутник Rohini; 3 — РДТТ четвертой ступени; 4 — отсек системы управления; 5 — РДТТ третьей ступени; 6, 8 — блоки системы управления вектором тяги; 7 — РДТТ второй ступени; 9 — трехсегментный РДТТ первой ступени; 10 — аэродинамические стабилизаторы; 11 — газовые рули.
Специалисты посоветовали А. Каламу возобновить отсчет, поскольку в РСУ имелся двукратный запас по рабочему телу.
В Т=0 ракета SLV-3 взлетела. Первая ступень отработала нормально; включилась вторая. Однако уже через несколько секунд РН потеряла ориентацию…
После шести месяцев расследования специальная комиссия установила, что причиной аварии стало засорение управляющего клапана.
В этой связи к месту высказывание Вернера фон Брауна, посетившего ISRO: «Если вам надо сделать что-либо в ракетной технике, делайте это сами. SLV-3 — подлинно индийский проект; а раз так — вам дозволено иметь и собственные проблемы. Надо лишь помнить, что пользу можно извлекать не только из успехов, но и из неудач».
Второй полет SLV-3 состоялся 18 июля 1980 г. Внимание всей Индии было приковано к полигону SHAR. Компьютер запустил полетные операции в Т-4 мин. В Т=0 полет начался. А через 600 сек А. Калам объявил по громкоговорящей связи: «Говорит руководитель полета. SLV-3 развил требуемую скорость и достиг высоты, чтобы доставить спутник Rohini в космос. Наши наземные станции получат подтверждение, что спутник вышел на орбиту, в пределах часа». Со стороны галереи посетителей раздался шквал аплодисментов…
Первый пуск SLV-3 (Фото с сайта президента Индии).
Четвертая ступень вывела в космос ИСЗ Rohini (RS1) — небольшой телеметрический контейнер массой 35 кг в форме восьмигранной призмы, переходящей в пирамиду. Установленные на корпусе солнечные батареи обеспечивали мощность 3 Вт. Согласно полетному заданию, спутник предназначался для контроля бортовых систем РН, орбитальных траекторных измерений и оценки эффективности СБ индийского производства. И он БЫЛ!
Индия доказала способность проектировать, строить и запускать собственные спутники на собственных ракетах — выдающееся достижение для страны «третьего мира»! И еще. В отличие от своей бывшей метрополии, Индия не остановилась на одном «престижном» запуске. 30 мая 1981 г. стартовала третья ракета SLV-3-D1. Первые три ступени функционировали штатно, но четвертая отделилась не совсем «чисто», и спутник RSD1 массой 38 кг, который нес твердотельную камеру с ПЗС-матрицей для съемки Земли из космоса, оказался на нерасчетной орбите с перигеем 181 км. За счет естественного торможения в верхних слоях атмосферы он прекратил существование уже через девять суток.
17 апреля 1983 г. был запущен четвертый носитель данной серии. SLV-3-D2 успешно вывел на орбиту спутник RSD2 массой 41,5 кг. Третий «Рохини» передавал прекрасные изображения Земли.
Сегодня Абдул Калам — президент Республики Индия. Пожелаем ему государственной мудрости и новых выдающихся свершений на этом высоком посту!
Пользуясь поддержкой властей и широкого общественного мнения, индийские специалисты продолжают интенсивно развивать ракетно-космические технологии. Страна стремится играть более активную роль на международной арене, и спутники становятся важным инструментом получения объективной информации о мире и предметом межгосударственного сотрудничества.
Перспективный пятиступенчатый космический носитель ASLV (Advanced Space Launch Vehicle) включает модифицированное «ядро» (центральный блок) SLV-3 с двумя навесными твердотопливными стартовыми ускорителями (на базе первой ступени SLV-3). После неудачных запусков в 1987 и 1988 гг., ASLV успешно вывел на орбиту 20 мая 1992 г. «увеличенный» ИСЗ серии Rohini SROSSC (Stretched Rohini Satellite Series) массой 150 кг.
За ASLV последовали четырехступенчатая ракета-носитель полярных спутников PSLV (Polar Satellite Launch Vehicle) и самая мощная на сегодня в Индии трехступенчатая ракета-носитель геостационарных спутников GSLV (Geosynchronous Satellite Launch Vehicle).
Параллельно развиваются и военные программы. Проектно-конструкторские решения российских, французских и американских ракет изучаются, образцы по возможности импортируются; бортовое и наземное оборудование разрабатывается под сильным влиянием немецких и израильских специалистов. Например, на базе зенитной ракеты советского производства была создана ракета Prithvi, которая применяется в качестве второй ступени БР промежуточной дальности Agni. В свою очередь, первая ступень Agni создана на основе первой ступени ракеты-носителя SLV-3.
Республика Индия желает стать уважаемым и сильным государством — «цивилизацией». Пограничные проблемы с Пакистаном и Китаем страна стремится решать дипломатическим путем, однако считает необходимым подкрепить свои позиции внушительной военной мощью.
Что касается «глубинных» причин интереса Индии к исследованиям и освоению космического пространства — несмотря на бедность, социальные трудности, зависимость от иностранной помощи и т. д. — важно подчеркнуть следующее. «Восток или, во всяком случае, та его часть, которую называют Индией, — отмечал Джавахарлал Неру (J.Nehru), — любит предаваться размышлениям, и часто размышлениям по поводу вопросов, которые кажутся нелепыми и бессмысленными тем, кто считает себя «практическими» людьми… Индия всегда глубоко чтила мысль и людей мысли, ученых, и не соглашалась признавать превосходство над ними солдат или богачей».
«Индийский космос» — это символ национальной веры в великое, мудрое и изобильное будущее, это мощь и престиж самой высокой пробы, в конце концов, это мост между реальной и мифологической Вселенными, существующими в душе каждого индийца.
Абдул Калам (третий справа) в окружении коллег на праздновании 25-летия запуска Rohini (Фото с сайта президента Индии).
Первый «Горизонт» Израиля.
Главной причиной того, что относительно небольшое государство Израиль стало «полноправной» космической державой (8-й по счету[35]), явилась необходимость вооруженного противостояния с недружелюбно настроенными арабскими соседями. Израиль всегда остро нуждался в разведке, в т. ч. в разведке из космоса, которая позволяла бы получать оперативные данные о силах, инфраструктуре и приготовлениях потенциальных противников.
Принято считать, что впервые вопрос о необходимости для Израиля космических средств наблюдения поднимался в 1974 г. Шимоном Пересом (Shimon Peres) в бытность его министром обороны страны. Перес обратился к тогдашнему премьер-министру Ицхаку Рабину (Yitzhak Rabin) с предложением приобрести фоторазведывательные спутники в США. Однако Рабин отнесся к этой идее отрицательно.
Сближение Израиля с Францией, которое началось накануне ближневосточной войны 1956 г., стимулировало, помимо прочего, сотрудничество в области разработки ракет. В 1963 г. представители министерства обороны Израиля и фирмы Dassault подписали контракт на сумму 100 млн $, предусматривающий постройку 25 баллистических ракет «земля» — «земля» Jericho I («Иерихон-1», французское обозначение MD-620), часть — для испытаний, остальные — предсерийные. При этом Шимон Перес напрямую взаимодействовал с Марселем Дассо (Marcel Dassault). Интерес был обоюдный: за эти деньги французы без лишней огласки делали первую в своей практике БР с бортовым вычислителем[36] (причем под патронажем Комитета по вооружениям DMA кабинета министров!), а израильтяне укореняли на «земле обетованной» современные ракетные технологии. Ключевыми фигурами проекта MD-620 считают Жана Руау (Jean Rouault) и Филиппа Амблара (Philippe Amblard). Ракеты строились на заводах Dassault, окончательная сборка выполнялась французами при участии израильских специалистов.
Проектирование ракеты и изготовление первых образцов продолжалось около трех лет. Всего, по французским источникам, построено 16 опытных и 4 предсерийные ракеты. Первый опытный запуск состоялся 1 февраля 1965 г. с французской военно-морской базы CEREC (Центр опытов и исследований специального оружия), находящейся близ Тулузы на о. Южный Леван.
Jericho I — двухступенчатая БР длиной 13,4 м и диаметром 0,8 м, массой 6,7 т, с четырьмя дельтавидными стабилизаторами и «нестандартным» делением на ступени: первая (стартовая) ступень имеет длину 4,05 м и массу 1950 кг, вторая (маршевая) — длину 5,0 м и массу 4100 кг. Ракета оснащена отделяющейся боеголовкой длиной 4,35 м (!) и массой 650 кг.
Дальность полета БР 235–500 км, КВО (круговое вероятное отклонение) менее 1 км. Старт — со стационарной или подвижной пусковой установки. Время подготовки — до двух часов, расчетный коэффициент успешных запусков — около 90 %. Стоимость Jericho I оценивают в 1,0–1,5 млн $ за ракету. Аналитики США полагают: боевые пуски этой БР дороги и малоэффективны с боеголовкой, содержащей обычные взрывчатые вещества. А вот в ядерном или химическом снаряжении — наоборот.
Первый израильский спутник Oz-1 (он же Ofeq-1).
После войны 1973 г. Израиль пытался (неудачно) получить у Соединенных Штатов ракету Pershing-I. Эта попытка может указывать на то, что «Иерихон-1», который имеет идентичную с «Першингом-1» дальность, либо был недостаточно боеготов (и требовалась его модернизация), либо израильтяне таким образом хотели приобрести технологию мобильных и «точных» оперативно-тактических БР, отличную от «французских корней» «Иерихона».
В 1981 г. начальник военной разведки АМАН генерал-майор Йегошуа Саги (Yehoshua Sagi) санкционировал выделение 5 млн $ на изучение возможности производства в Израиле искусственных спутников Земли, ракет-носителей и фотоаппаратуры для космической съемки. Проведенные исследования показали принципиальную осуществимость этого плана.
В конце 1982 г. на секретном совещании премьер-министр страны Менахем Бегин (Menahem Begin), министр обороны Ариэль Шарон (Ariel Sharon) и бригадный генерал Аарон Бейт-Халахми (Aaron Beit-Halahmi) приняли решение придать космической программе государственный статус.
Юваль Неэман.
Хаим Эшед.
Аби Хар-Эвен.
Израильское космическое агентство ISA (Israel Space Agency) было создано в 1983 г., в основном, как гражданское «прикрытие» программы разработки фоторазведывательных спутников Ofeq («Горизонт») и ракет-носителей Shavit («Метеор»). Должность председателя совета директоров ISA занял д-р Юваль Неэман (Yuval Ne'eman), известный ученый, член кнессета и глава политического движения. «Военным умом» программы стал член коллегии ISA и директор проектов агентства, бригадный генерал в отставке, профессор Хаим Эшед (Haim Eshed). Именно его считают «отцом израильского космоса».
В 1983 г. работы над космическим проектом были приостановлены по решению нового начальника военной разведки Эхуда Барака (Ehud Barak), но в 1984 г. они возобновились по настоянию министра обороны Моше Аренса (Moshe Arens). Концерн «Таасия авирит» IAI (Israel Aircraft Industries, Ltd.) выиграл конкурс на разработку спутника и ракеты-носителя. Соперничал с IAI концерн RAFAEL (последний, в конечном итоге, создал для РН двигатель третьей ступени).
В 1986 г. командующий израильскими ВВС генерал-майор Авиху Бин-Нун (Avihu Bin-Nun) отказался принять ведомственную ответственность за разработку спутника Ofeq. Очевидно, задачи воздушной разведки решались проще и дешевле «традиционными» средствами.
В поддержку проекта выступил начальник военной разведки Амнон Липкин-Шахак (Amnon Lipkin-Shahak), и в 1987 г. АМАН принял ответственность за разработку КА на себя.
Задачами первого экспериментального полета спутника были определены:
— отработка ракеты-носителя;
— проверка работоспособности солнечных батарей;
— проверка устойчивости работы бортовых систем в условиях орбитального полета, а также линии передачи данных «КА — Земля»;
— сбор данных о космическом пространстве и магнитных полях Земли.
Особо учитывался политический резонанс и всеобъемлющий для нации моральный эффект космического проекта — в известном смысле, именно ЭТО являлось главной задачей.
Трехступенчатая твердотопливная РН Shavit: 1 — сбрасываемый головной обтекатель; 2 — ПГ; 3 — сферический РДТТ третьей ступени; 4 — система управления; 5 — РДТТ второй ступени; 6 — агрегаты системы управления вектором тяги; 7 — РДТТ первой ступени; 8 — аэродинамические рули; 9 — сбрасываемые газовые рули.
Первый израильский спутник Oz-1 (он стал известен под названием Ofeq-1) был запущен 19 сентября 1988 г. с испытательного полигона авиабазы Пальмахим ракетой-носителем Shavit и выведен на орбиту с параметрами:
— наклонение орбиты — 142,9°;
— апогей — 1149 км;
— перигей — 250 км;
— период обращения — 98 мин 10 сек.
Исходя из геополитических условий, ракета-носитель была запущена не в восточном, а в западном направлении, дабы избежать падения отработавших ступеней на территорию арабских государств. Это направление, противоположное общепринятому, стало отличительной особенностью всех запусков с территории Израиля[37].
Экспериментальный ИСЗ Ofeq-1 имел форму неправильной восьмигранной призмы (длина — 2,3 м, максимальный диаметр — 1,2 м) и массу 156 кг, из которых 33 кг приходилось на конструкцию, 58 кг — систему энергоснабжения, 7 кг — бортовой компьютер, 12 кг — систему связи, 5 кг — систему терморегулирования, 9 кг — кабельную сеть; на прочие приборы и балансировочные грузы отводилось еще 32 кг.
Солнечные батареи на гранях стабилизированного вращением спутника обеспечивали выработку 246 Вт электроэнергии. Для ориентации ИСЗ служили трехосный гироскоп, блок магнитометров и солнечный датчик. Полный состав бортовых систем до сих пор не рассекречен, однако особо отмечалось, что разведывательной фотоаппаратуры ИСЗ на борту не имел.
В ходе полета спутника выявилась неисправность в запоминающем устройстве телеметрической системы, оно было переключено на запасной компьютерный блок. Ofeq-1 активно функционировал несколько недель, оставался на орбите около 4-х месяцев и сошел с нее 14 января 1989 г.
Ракета-носитель Shavit создана на предприятии MALAM концерна IAI. Две нижние ступени ракеты оснащены РДТТ производства предприятия Givon концерна IMI (Israel Military Industries, Ltd.), верхняя — разработана концерном RAFAEL.
Считается, что космическая РН Shavit создана на базе БР Jericho II, которая способна доставить израильскую ядерную боеголовку на дальность около 1500 км.
Твердотопливная двухступенчатая БРСД Jericho II имеет длину 14 м, диаметр корпуса 1,56 м и стартовую массу до 26 т. Двигатели произведены концерном IMI, тем же, что делает РДТТ для носителя Shavit и противоракеты Arrow. Двигатель первой ступени работает в течение 52 сек, второй ступени — 85 сек. Разгон завершается на высоте примерно 105 км, боеголовка отделяется. Ракета имеет инерциальную систему управления.
Известно о существовании подземных сооружений для хранения и запуска ракет Jericho I и Jericho II с ядерными боеголовками в позиционном районе западнее Иерусалима. Сооружения включают бункер хранения, сеть транспортных путей и пещеры-боксы, используемые для предстартовой подготовки БР. По мнению экспертов США, в арсенале ракетно-ядерных сил Израиля находится примерно 50 Jericho I и до 50 Jericho II.
С апреля 1995 г. стали появляться сообщения, что Израиль ведет разработку ракеты с досягаемостью до 2000 км на базе улучшенного варианта БРСД Jericho II.
Нужно отметить, что при достижении весьма неплохих характеристик (при стартовой массе чуть больше 22 т Shavit способен доставить КА массой около 160 кг на орбиту высотой 250x1200 км с большим «обратным» наклонением — 142,9°) израильские специалисты применили всего два типоразмера РДТТ для нижних (первой и второй) и верхней ступеней.
Двигатели первой/второй ступеней имеют мотаный графито-эпоксидный корпус и отличаются друг от друга степенью расширения сопла и формой внутреннего канала твердотопливной шашки.
Управление полетом на участке работы первой ступени осуществляется с помощью четырех газовых рулей, расположенных на срезе сопла (сбрасываются после окончания вертикального подъема), а также четырех поворотных аэродинамических рулей.
Разделение ступеней — «горячее», т. е. вторая ступень включается в момент окончания работы первой. Управление полетом на участке работы второй ступени по каналам рысканья и тангажа — впрыском жидкости (перхлорат стронция) в закритическую часть сопла, по крену — микро-ЖРД на гидразине.
РДТТ третьей ступени (Фото RAFAEL).
Третья ступень имеет обозначение AUS-51 Marble («Мрамор») и включает сферический РДТТ с корпусом из титанового сплава. Сопло двигателя изготовлено из композиционного материала.
Для предстартовой подготовки РН Shavit используется набор оборудования, смонтированный на колесных прицепах, что, в сочетании с мобильной пусковой установкой (полагают, она заимствована от БРСД Jericho II) позволяет провести полную проверку и запуск РН независимо от географического положения точки старта.
Две первые ступени обеспечивают вывод ПГ на высоту ~110 км. Далее начинается свободный полет до -250 км. Здесь сбрасывается головной обтекатель и производится ориентация и закрутка т. н. «верхней сборки» (система управления и третья ступень РН, ИСЗ). Включается РДТТ ступени Marble, который в горизонтальном направлении сообщает спутнику скорость, необходимую для выхода на околоземную орбиту. В конце работы третьей ступени КА отделяется и с помощью собственных микро-ЖРД выходит на переходную, а затем, если надо, на заданную рабочую орбиту.
Старт РН Shavit со спутником Ofeq (Фото IAI).
В настоящее время Израиль работает над модификацией РН Shavit. Планы разработки модели, обозначенной LK-1 или NEXT («Следующий»), были представлены в октябре 1994 г. на 45-м конгрессе Международной астронавтической федерации в Иерусалиме. Первая ступень ракеты на 20 % длиннее «штатной»; кроме того, РН оснащена усовершенствованной третьей ступенью и дополняется новой четвертой ступенью с ЖРД тягой 300 кгс на долгохранимом топливе. Ракета сможет выводить ПГ массой до 350 кг на круговую полярную орбиту высотой 700 км, а также вместо одного «большого» спутника — одновременно три «малых».
Современные и перспективные представители семейства РН Shavit:
1 — более мощный РДТТ на первой ступени; 2 — добавление системы управления вектором тяги на третьей ступени; 3 — новая жидкостная четвертая ступень; 4 — более мощный РДТТ на второй ступени; 5 — отсутствие первой ступени.
На авиасалоне Le Bourget-2002 тогдашний генеральный директор ISA Аби Хар-Эвен (Aby Har-Even) сообщил, что предприятие MALAM изучает еще более мощный четырехступенчатый образец РН, обозначаемый как LK-2. Он будет создан на базе LK-1, при этом вторая ступень станет на 20 % длиннее «штатной». Ракета сможет выводить один «большой» либо четыре «малых» спутника общей массой до 400 кг на круговую полярную орбиту высотой 700 км[38].
Также изучается возможность создания ракеты с воздушным стартом ALV (Air-Launch Vehicle), в конструкцию которой включены вторая, третья и четвертая ступени от LK-1. Ее запуск мог бы выполняться, например, с борта транспортного самолета С-130 Hercules.
Израильские космические фирмы (IAI, RAFAEL) пытаются выйти на международный рынок пусковых услуг. В частности, в 1990 г. IAI совместно с Delta Research Inc. (Хантсвилл, Алабама) предложили РН Shavit для запуска КА Meteor (NASA). Однако в 1994 г. в конкурсе на сверхлегкий носитель для американской космической программы победила крылатая РН Pegasus фирмы Orbital Sciences Corporation (OSC).
Запуск спутника Ofeq-6 был неудачным (Фото IAI).
Также неудачей закончились попытки пробиться на рынок пусковых услуг в сотрудничестве с компанией Coleman Research Corp., в кооперации с европейским концерном Astrium, что, как представляется, связано главным образом с политическим имиджем государства Израиль (в тот период).
После запуска КА Ofeq-1 хронология космической деятельности Израиля выглядит следующим образом: 3 апреля 1990 г. РН Shavit вывела на орбиту КА Ofeq-2/Oz-2 (как сообщалось, без разведывательной фотоаппаратуры). 1991–1993 гг. Два неудачных запуска, завершившихся падением спутников в море.
5 апреля 1995 г. РН Shavit вывела на орбиту Ofeq-3 (масса 225 кг). Израиль впервые получает собственный спутник оптической разведки. 21 января 1998 г. Запуск KA Ofeq-4 сорвался в результате аварии второй ступени РН Shavit.
1999 г. Израильские ВВС принимают ведомственную ответственность за дальнейшую разработку и оперативную эксплуатацию спутников серии Ofeq.
5 декабря 2000 г. Коммерческий КА EROS-А1 (модификация аппарата Ofeq-З) выведен на орбиту РН «Старт-1» с космодрома Свободный (Россия). Основным покупателем отснятых кадров становится Минобороны Израиля.
28 мая 2002 г. Модифицированная РН Shavit (LK-A, некий промежуточный вариант к NEXT) вывела на орбиту 370х600 км разведывательный спутник Ofeq-5.
6 сентября 2004 г. из-за неразделения второй и третьей ступеней РН Shavit (NEXT) аварийно завершился запуск КА Ofeq-6.
25 апреля 2006 г. с космодрома Свободный ракетой «Старт-1» запущен второй коммерческий спутник EROS-B.
Спутник EROS-В на калибровке оптико-электронной камеры (Фото IAI).
Космическая программа Израиля в обозримой перспективе предполагает постоянно держать на орбите два-три разведывательных ИСЗ, что позволит военно-политическому руководству страны иметь дополнительный канал оперативной информации о дислокации и передвижениях крупных воинских контингентов и авиации государств Ближнего и Среднего Востока. Масштабных космических проектов научного или народнохозяйственного назначения Израиль позволить себе не может.
Данное несоответствие — между потенциальными возможностями и жестко ограниченными ресурсами — является самой печальной «нотой» в космической «симфонии» Израиля, и потребуется масса инноваций и изобретательности, чтобы чрезвычайно чувствительный для страны критерий «стоимость — эффективность» был на стороне перспективных «демилитаризованных» проектов. В этой связи, как представляется, огромную позитивную роль может сыграть сотрудничество с космическими агентствами и ведущими фирмами государств-членов и кандидатов «космического клуба» — объединяя усилия и возможности, в выигрыше оказываются все.
Макет носителя NEXT, предложенного на экспорт (Фото Л.Розенблюма).
Новобранцы «Космического клуба».
Помимо «действительных членов» существуют и «кандидаты» в «Большой космический клуб». Как правило, это государства с претензией на роль регионального лидера. Их национальная ракетно-космическая биография только-только начинается — и значимость свершившихся исторических фактов на этом пути еще не отсепарирована временем. Поэтому сведения, приводимые ниже, скупы, местами отрывочны и поверхностны.
Главное здесь в другом — каков общий «тонус» прикладываемых державой усилий, стартовый уровень ее ракетной техники, а также декларируемый вектор космической экспансии. Это важно: полноформатное членство в «космическом клубе» открывает новые возможности ПЛАНЕТАРНОГО масштаба. С соответствующими дивидендами в политических, научно-технических, военных, социальных и многих других аспектах.
Однако не все так просто и благостно. Изменение политического строя в некоторых странах-кандидатах (по разным причинам), антиракетный прессинг сильных мира сего затормозили многие национальные проекты РКТ — и возможно, навсегда. Глобализация мира, в т. ч. жесткая фиксация сложившейся к XXI веку региональной специализации космической науки и индустрии высоких технологий полного цикла, также не способствует развертыванию национальных разработок РКТ «с нуля». Тем не менее, процесс пополнения «Большого космического клуба» идет. И это, как представляется, — самое интересное…
Программа Южной Африки — секретный «клон» израильской?
В 1974 г. израильский премьер-министр Шимон Перес (Shimon Peres) и южноафриканский президент Джон Форстер (John Vorster) провели секретную встречу в Женеве. Цель: стратегическое сотрудничество и взаимный договор защиты, согласно которому «стороны помогали бы друг другу в военное время, обеспечивая поставки запасных частей и боеприпасов из резерва». Кроме того, каждое государство обязалось предоставлять свою территорию «чтобы сохранить все типы оружия другой стороны».
В рамках этого соглашения началось сотрудничество в области ракетной и ядерной технологий. ЮАР предоставила Израилю уран и ракетно-ядерный полигон, получив взамен технологию создания РДТТ массой около 10 т, освоенную в израильских БР Jericho II. Разработанные в ЮАР боевые ракеты RSA-1 и RSA-2 были предназначены для устрашения просоветских соседей — Анголы и Мозамбика. Предполагают, что RSA-2 — «родная сестра» Jericho II, а RSA-3 — ракеты-носителя Shavit.
Полагают также, что некоторое время велась разработка МБР RS A-4, возможно, чтобы удержать «сверхдержавы» от организации гипотетической интервенции в ЮАР под флагом Организации Объединенных Наций[39].
Возможности RSA-3 в качестве РН оценивались массой ПГ в 330 кг, выводимой на орбиту высотой 212x460 км и наклонением 41°. В последующем планировалось создать более мощный вариант носителя, способный доставить на орбиту высотой до 1400 км спутник массой 550 кг.
Стенд для испытаний двигателей располагался в местечке Рой Элс (Rooi Els), а запуски носителя RSA-3 предполагалось производить с ракетного полигона Оверберг (Overberg Test Range).
Как прикрытие для боевой тематики была провозглашена южноафриканская космическая программа. Построены четыре космических ракеты; три из них были запущены на суборбитальные траектории в конце 1980-х гг. в рамках программы разработки КА Greensat (предназначался для регионального мониторинга и управления транспортными потоками).
Ракетно-артиллерийский полигон ЮАР площадью 43 тыс га расположен примерно в 200 км восточнее Кейптауна и тянется на 70 км вдоль побережья Индийского океана. Разрешенные азимуты пуска и имеющееся оборудование позволяют выводить КА на орбиты с наклонением от 38° до 100°, включая солнечно-синхронные и околополярные орбиты. Строительство полигона и стартовых сооружений началось в 1983 г. В июне 1989 г. здесь была испытана в полете первая ступень носителя RSA-3, а в июле 1989 г. и ноябре 1990 г. — совместно первая и вторая ступени РН.
Ракета-носитель RSA-3 — апофеоз ракетной программы ЮАР… и «клон» израильского «Шавита» (Фото с сайта www.astronautix.com).
В 1992 г. была создана государственная компания Denel (Pty) Ltd., которая сосредоточила у себя все перспективные разработки в аэрокосмической области, а также производство современных вооружений, в т. ч. ракетных. Система апартеида рушилась, и проводимые реорганизации призваны были сохранить накопленный технологический потенциал.
Однако в июне 1993 г., когда на разработку национальной РН уже ушло 55 млн $, было признано «экономически неоправданным» осуществлять с ее помощью запуски отечественных и зарубежных коммерческих КА. В середине 1994 г. работы по носителю были полностью прекращены, а в 1995 г. ЮАР присоединилась к международному соглашению о режиме нераспространения ракетных технологий MTCR (Missile Technology Control Regime).
Технологический макет RSA-3 и подвижного транспортно-пускового агрегата передали в Музей ВВС в Претории. Сейчас уже можно оценить характеристики носителя: трехступенчатая РН стартовой массой 23630 кг, длиной 15,0 м и диаметром корпуса 1,3 м развивала тягу на старте 42080 кгс. Судя по энергетическим параметрам, на первой и второй ступенях носителя применен РДТТ, снаряженный шашкой топлива массой около 9 т, аналогичный двигателю РН Shavit. Управление ракетой на участке полета первой ступени смешанное: газовые рули, установленные на срезе сопла, и аэродинамические рули. Вторая ступень имеет сопло РДТТ с большой степенью расширения и оснащена системой управления вектором тяги.
Спутник Greensat (Фото ISSA).
В верхней части второй ступени установлен блок управления и закрутки третьей ступени и полезного груза общей массой 526 кг.
После выгорания топлива второй ступени следует участок свободного полета продолжительностью 148 сек, во время которого осуществляется закрутка верхней ступени и сброс головного обтекателя. В апогее траектории стабилизированная вращением третья ступень доводит скорость до орбитальной. На этой ступени применен сферический РДТТ, подобный израильскому на РН Shavit.
Обтекатель ПГ длиной 4,5 м и диаметром 1,3 м изготовлен из композиционного материала и имеет массу 57 кг.
Уничтожив режим апартеида, новое правительство ЮАР позволило американским наблюдателям присутствовать при ликвидации ключевых элементов дальней ракеты и космического носителя. Основной национальный подрядчик — компания Houwteq — демонтировала созданный задел по ракетам RSA. Фирма-изготовитель топлива Somchem уничтожила его компоненты и корпуса РДТТ. Denel взорвала самый большой двигатель и ликвидировала специализированное оборудование рентгенографического контроля шашек РДТТ.
Власти решили сохранить полигон Оверберг для потенциальных иностранных партнеров. В частности, полигон задействовался в испытаниях космической техники по британским, шведским и чешским программам, а также в обеспечении некоторых пусков США.
Возвращение страны в мировое сообщество стало, бесспорно, всеобщим благом, однако для национальных космических амбиций ЮАР места в современном мире, увы, пока не нашлось…
Северокорейский «спутник-призрак».
31 августа 1998 г. Корейская Народно-Демократическая Республика потрясла мир, запустив ракету в космос. Но! Несмотря на официальные утверждения властей КНДР об «успешном выводе на орбиту первого северокорейского спутника мирного назначения», ни военные службы США и России, ни независимые наблюдатели не смогли найти никаких следов этого аппарата в околоземном пространстве. А это значит, что полет был либо неудачной попыткой космического запуска, либо летными испытаниями многоступенчатой баллистической ракеты дальнего действия.
Информационные службы КНДР объявили, что «ракета стартовала со стартовой площадки в районе деревни Мусудан (Musudan-ri) уезда Хвадэ-гун (Hwadae) в провинции Хамгён-Пукто (Hamgyong) и вывела спутник на орбиту в 12:11:53, через 4 мин 53 сек после старта». Согласно тексту сообщения, «ракета состоит из трех ступеней. Первая ступень отделилась через 95 сек после старта и упала в «открытые воды Восточного моря Кореи» (Японское море) в 253 км от стартовой площадки. Вторая ступень «открыла капсулу» (предположительно, имеется ввиду сброс головного обтекателя) через 144 сек, отделилась от ракеты через 266 сек, после чего упала в открытые воды Тихого океана в 1646 км от стартовой площадки. Третья ступень вывела спутник на орбиту через 27 сек после отделения от второй ступени».
Было объявлено, что спутник обращается по эллиптической орбите с параметрами:
— наименьшее расстояние от поверхности Земли — 218,82 км;
— наибольшее расстояние от поверхности Земли — 6978,2 км;
— период обращения — 165 мин 06 сек.
Наклонение орбиты не сообщалось. Из координат района и азимута пуска следовало, что оно должно быть около 41°. Далее в сообщении говорилось: «Спутник оборудован необходимыми измерительными приборами. Он внесет вклад в развитие научных исследований для мирного использования космического пространства… В настоящее время спутник передает мелодию бессмертных революционных гимнов «Песня о полководце Ким Ир Сене» и «Песня о полководце Ким Чен Ире», и сигналами азбуки морзе — «Чучхе, Корея» на частоте 27 МГц».
Ни Космическое командование США, ни Система контроля космического пространства РФ не выявили никаких орбитальных объектов, которые можно было бы «привязать» к объявленному КНДР запуску. Более того, ни официальные службы других стран, ни радиолюбители по всему миру не смогли зафиксировать столь характерных радиосигналов в полосе 27 МГц. Вывод был однозначен: северокорейского спутника на орбите нет. Оставался второй, более сложный вопрос: а была ли попытка запуска спутника, или все заявления по этому поводу — легендирование испытаний баллистической ракеты?
Стартовое сооружение для испытательных пусков ракет. Заметно «китайское влияние» — от особенностей внешнего вида башни обслуживания (см. рис. внизу) до применения на третьей ступени РДТТ, который мог быть «открыто» закуплен в «Поднебесной» (Рис. Ч.Вика).
Чтобы ответить на этот второй вопрос, взглянем, чем располагает Пхеньян в плане ракетной техники.
Первоосновой ракетной программы КНДР, как и большинства дружественных СССР стран, стали мобильные оперативно-тактические ракеты Р-17, широко известные в мире под названием «Скад» (точнее, Scud-B). Северокорейцы освоили их серийное производство, а впоследствии модернизировали, доведя дальность до 500 км за счет увеличения длины баков и продолжительности работы двигателя. С 1987 г. КНДР стала эти ракеты экспортировать.
Рис. Ч.Вика.
В 1993 г. КНДР испытала ракету «Нодон» (Nodong — «Труд»), дальность которой, по некоторым данным, может достигать 1000–1300 км (хотя в первом испытательном пуске она пролетела всего 500 км). Предполагается, что «Нодон» тоже может стать (или уже стал) экспортным товаром. В частности, объявленные характеристики новой пакистанской ракеты «Гаури» (Ghauri) с дальностью полета до 1600 км и боевой частью массой 700 кг соответствуют параметрам «Нодона».
Предварительная реконструкция северокорейской РН: 1 — спутник; 2 — твердотопливная третья ступень; 3 — головной обтекатель; 4 — система управления; 5 — жидкостная вторая ступень; 6 — соединительная ферма; 7 — жидкостная первая ступень; 8 — связка ЖРД первой ступени; 9 — аэродинамические стабилизаторы (Рис. Ч.Вика).
Следующим шагом должны были стать ракеты средней дальности «Тэпходон-1» (Taep'odong; 1500–2000 км) и МБР «Тэпходон-2». Эти наименования условны — они даны зарубежными наблюдателями по названию района, связанного с ракетной программой КНДР. Спутниковая съемка северокорейской стартовой площадки показывает весьма примитивные пусковые сооружения и средства обслуживания.
Анализ снимка стартующей «космической» ракеты, опубликованного северокорейским информационным агентством ЦТАК, позволил американскому эксперту Дж. Пайку предположить, что:
1. изображение ракеты «наложено» на изображение местности (цветовой анализ показывает кусочно-прямоугольную рамку вокруг изображения ракеты и выхлопа);
2. изображение сжато по горизонтали примерно на 1/4, в результате чего ракета выглядит неестественно тонкой. Если растянуть картинку от исходного размера 301хЗ97 точек до квадратной (397хЗ97), то конфигурация ракеты совпадет с реконструкциями «Тэпходон-1», выполненными Национальным центром анализа разведывательной информации США и Федерацией американских ученых.
По версии некоторых специалистов, северокорейцы вполне могли осуществить запуск носителя, имеющего третью ступень с РДТТ. Но реально ли такой ракетой вывести на орбиту спутник?
Предположив, что ракета, стартовавшая 31 августа 1998 г., состояла из «Нодона» в качестве первой ступени и модифицированного Scud-B c удлиненными баками в качестве второй, можно оценить потребные параметры третьей ступени для разгона ПГ до первой космической скорости.
Предполагается, что первые ступени носителя — управляемые, а третья стабилизируется вращением. Согласно официальной циклограмме, она работала всего 27 сек. В расчет заложены характеристики РДТТ, достигнутые на западных РН в конце 1950-х годов.
14 сентября 1998 г. на страницах газеты ЦК Трудовой партии Кореи «Нодон синмун» была опубликована фотография объекта, названного «северокорейским спутником». Внешне он весьма напоминает первый китайский спутник, запущенный 24 апреля 1970 г., но северокорейский ИСЗ должен быть намного меньше.
Было также объявлено, что спутник получил название «Кванмёнсон-1» (Kwangmyongsong-1, «Яркая звезда»).
Вашингтон потребовал от Пхеньяна прекратить ракетную программу; КНДР согласилась при условии, что ее расходы на разработку ракет будут компенсированы ежегодными выплатами в 1 млрд $ в течение трех лет. Подобный расчет не устроил руководство США, которое использовало сложившуюся ситуацию как доказательство необходимости создания национальной системы противоракетной обороны «от подобных Северной Корее государств-изгоев».
4 июля 2006 г. КНДР провела очередную серию ракетных испытаний, одно из которых в США идентифицировали как первый пуск ракеты «Тэпходон-2». По заявлению официальных представителей Белого дома, полет МБР закончился аварией на 42-й секунде после старта.
Северная Корея использует каждый успех своей ракетно-ядерной программы как предмет политического торга с США, Японией и Южной Кореей — и мы видим, что «торг уместен». Время покажет, насколько он продуктивен…
Бразильские «фальстарты».
Бразильское правительство и общество настойчиво стремятся к созданию национальной ракетно-космической промышленности, связывая с ее появлением новые возможности по освоению природных ресурсов, совершенствованию телекоммуникационной сети, решению задач по охране окружающей среды и метеообеспечению. Кроме того, присоединение Бразилии к «клубу космических государств» рассматривается как важный фактор повышения авторитета страны в региональном и международном масштабе[40].
Высотная ракета Sonda 1 (Фото IAE).
Исследования по космической тематике начались в Бразилии в конце 1950-х годов, когда в ВВС страны была сформирована целевая аэрокосмическая лаборатория.
В 1965 г. совершила первый полет национальная исследовательская ракета Sonda, которая подняла на высоту 64 км полезный груз 4 кг. Успехи в осуществлении данной программы стали возможны вследствие тесного сотрудничества бразильцев с США и Францией. Отметим, что эти работы проводились в течение 25 лет (создано пять модификаций твердотопливной ракеты Sonda на базе американской технологии).
В стране появились квалифицированные инженерно-технические кадры, авиакосмические НИИ и предприятия. Это позволило, начиная с 1979 г., приступить к реализации Автономной космической программы (Missao Espacial Completamente Brasileira), которая предполагала проектирование, изготовление и вывод на околоземную орбиту КА на основе достижений национальных научных центров и промышленности.
Ракета Sonda 4 стала прототипом ступеней спутникового носителя VLS-1 (Фото IAE).
Создание первого бразильского ИСЗ было поручено Национальному институту космических исследований INPE (Instituto Nacional de Pesquisas Espaciais) в г. Сан-Жозе-дус-Кампус. К концу 1980-х годов здесь был разработан спутник SCD (Satelite de Coleta de Dados), предназначенный для сбора метеорологической информации с наземных пунктов на территории Бразилии.
Разработкой ракеты-носителя VLS[41] (Veiculo Lancador de Satelites) с 1974 г. занимался Аэрокосмический технологический центр, подчиненный министерству аэронавтики Бразилии. Проект предусматривал создание РН, способной вывести на орбиту ИСЗ серии SCD.
Ракета-носитель VLS-1 на старте Фото IAE (Фото IAE).
Для демонстрации концептуальных технологий в 1984–1989 гг. было выполнено четыре пуска системы, имитирующей перспективный носитель (связка из пяти высотных ракет Sonda 4).
На разработку VLS было затрачено более 300 млн $. Созданная РН представляет собой полностью твердотопливную четырехступенчатую ракету стартовой массой около 50 т и высотой 19 м. Три первые ступени спроектированы на базе первой ступени ракеты Sonda 4. Четыре твердотопливных ускорителя (первая ступень) включаются на стартовом столе. Вторая ступень вложена внутрь связки ускорителей и начинает работу на высоте 20 км. Третья ступень — укороченный вариант второй. Четвертая ступень оснащена РДТТ с фиксированным «пустотным» соплом.
Для запуска РН на авиабазе бразильских ВВС Алкантара был построен одноименный космодром. Это место считается одним из самых удачных в мире — оно находится вблизи экватора на побережье океана, что позволяет проводить запуски ИСЗ на орбиты практически любого наклонения.
Второй пуск VLS-1 (Фото INPE).
В 1989 г., после десяти лет работы в рамках Автономной космической программы, стало ясно, что она фактически сорвана. Главной причиной был хронический недостаток средств. Из запланированных на разработку VLS 900 млн $ Аэрокосмический технологический центр получил лишь 170 млн $. Кроме того, решение бразильского правительства о «замораживании» в середине 1980-х годов заработной платы в государственном секторе привело к оттоку из аэрокосмической промышленности квалифицированных кадров.
В начале 1990-х годов INPE подготовил к полету первый спутник собственной бразильской разработки — SCD-1, однако в связи с неготовностью носителя VLS-1 Бразилии пришлось обратиться за помощью к США. 9 февраля 1993 г. спутник массой около 100 кг был выведен на круговую орбиту высотой около 750 км с наклонением 25° американским носителем Pegasus, стартовавшим с самолета-носителя B-52.
В 1994 г. было создано Бразильское космическое агентство AES (Agenda Espacial Brasileira). При этом стратегические приоритеты — собственные РН, спутник и космодром — не изменились.
Монтаж отсека системы управления (Фото INPE).
Запуск первой бразильской ракеты VLS-1 со спутником экологического мониторинга SCD-2A был произведен 2 ноября 1997 г. Полет продолжался всего 65 сек со значительным отклонением от намеченной траектории. По этой причине с наземного центра была дана команда на подрыв РН. Как показало последующее расследование, один из двигателей первой ступени не вышел на расчетный режим.
С учетом замечаний по первому пуску Институтом авиации и космоса Аэрокосмического центра ВВС Бразилии (IAE-CTA) был подготовлен второй экземпляр РН (VLS-1 V02). Попытка запуска 11 декабря 1999 г. окончилась неудачей — не прошло зажигание второй ступени. Ракета «прожила» лишь до 200-й секунды полета. Спутник для научных исследований и сбора данных SACI-2 имел массу 80 кг и должен был выйти на экваториальную орбиту высотой 750 км.
Запуск ракеты VLS-1 номер V03 с двумя спутниками[42] был намечен на 25 августа 2003 г. Однако за три дня до этого, 22 августа в 13:30 по местному времени, во время предстартовой подготовки на пусковом комплексе CLA1 авиабазы Алкантара произошел взрыв ракеты. Погиб 21 человек, более двадцати были ранены. Носитель вместе с полезным грузом (общей стоимостью порядка 6,5 млн $) был уничтожен, стартовый стол разрушен.
Это была третья — и снова неудачная — попытка Бразилии стать первой страной Латинской Америки (и 10-й космической державой мира), способной вывести национальный ИСЗ ракетой собственной разработки.
Эксперты признают, что в этой трагедии остается слишком много вопросов — причины и механизмы возникновения катастрофы непонятны. В нормальных условиях современное твердое ракетное топливо очень стабильно. Его невозможно поджечь спичкой; для того, чтобы «включить» РДТТ, необходим мощный воспламенитель с высокотемпературным факелом огня.
В сложившейся ситуации Бразильское космическое агентство видит выход в использовании стартовых площадок Алкантары для запуска ракет других стран.
Спутники SACI-2 и Satec до орбиты не добрались (Коллаж И.Афанасьева. и Фото INPE).
В частности, заключены предварительные соглашения с США (РН Taurus), Россией (РН «Старт»), Израилем (РН Shavit/LEOLINK). Наиболее далеко продвинулось сотрудничество с Украиной: удалось договориться о строительстве стартовых комплексов и запусках новой РН «Циклон-4», разрабатываемой специально для этого космодрома.
Таким образом, Бразилия твердо намерена и создать национальный носитель, и активно участвовать в освоении космического пространства. Как отметил в этой связи американский эксперт Джеймс Оберг (James E. Oberg), «…очень важно получить доступ в космос. Это не роскошь, не поза и не рекламный трюк. Это — будущее человечества. И Бразилия намерена играть здесь свою роль, что делает честь стране, ее населению и специалистам, погибшим в Алкантаре…».
Снимок пускового комплекса на полигоне Алкантара был сделан спутником Ikonos за 2 года до катастрофы (5 сентября 2001 г.), на врезке — через двое суток после нее. Видны сожженная растительность и разрушенный стартовый стол.
Космические амбиции Южной Кореи.
Первой корейской ракетой, о которой сохранилось письменное упоминание, считается оружие «Юхва» («Бегущий огонь»), изобретенное генералом Чхве Мусоном (Choe Mu-seon) в 1377 г. для обороны от японских пиратов.
После войны 1950–1953 г.г. состоялось знакомство южнокорейских военных с современными (на тот период) твердотопливными американскими ракетами: оперативно-тактическими (Honest John) и зенитными (Nike Hercules). Мощь и совершенство ракет восхищали…
Совершив в последней четверти XX века рекордный экономический рывок, Республика Корея сделала ставку на программу развития высоких технологий, в т. ч. аэрокосмических, считая это одним из способов поднять конкурентоспособность своих товаров на мировом рынке и одновременно повысить политическое реноме и оборонную мощь страны.
В октябре 1989 г. был создан Корейский авиакосмический исследовательский институт KARI (Korea Aerospace Research Institute), который установил партнерские отношения с соответствующими организациями США, Великобритании, Франции, России, КНР, Израиля, Польши. В ведении KARI находится Центр по интеграции и испытаниям спутников SITC (Satellite Integration and Test Center) — пока единственный в Корее. Он имеет чистые помещения класса 1000, оборудованные для сборки компонентов КА, вибростенд, систему измерения моментных характеристик аппаратов массой до 3,5 т, термовакуумные камеры для моделирования условий космического пространства, камеру электромагнитной совместимости и др. испытательное оборудование.
В 1990-е годы было налажено производство РДТТ массой до тонны. Эти двигатели применялись в модификации Nike Hercules, которую южнокорейские военные используют как ракету класса «поверхность — поверхность» с дальностью до 400 км.
Тогда же институт KARI разработал серию зондирующих ракет. В частности, одноступенчатая KSR-I (Korean Sounding Rocket-I, два пуска в 1993 г.) применялась для измерения вертикального распределения озона. Она оснащена твердотопливным двигателем KSR-420S (тяга 10 тс в течение 18 сек) и может поднимать полезный груз 150 кг на высоту 40–55 км. Стартовая масса 1,2 т, длина 6,7 м.
Во время двух пусков двухступенчатой KSR-II в 1997-98 гг. проводились исследования озонового слоя, распределения электронов и космических лучей. Первая и вторая ступени ракеты были оснащены твердотопливными двигателями KSR-420S и -420B соответственно, системой принудительного разделения ступеней, аэродинамическими поверхностями управления по схеме «утка». Ракета способна поднять ПГ 150 кг на высоту 130–150 км, имеет стартовую массу 2 т и длину 11,1 м.
Пуск ракеты KSR-III с кислородно-керосиновым ЖРД (на фото вверху) (Фото с проекта KARI).
Опыт создания и запуска одно-и двухступенчатых зондирующих ракет лег в основу проекта KSR-III — изделия промежуточного типа, предваряющего разработку РН легких спутников KSLV–I (Korean Space Launch Vehicle). Первый полет KSR-III состоялся 28 ноября 2002 г. с полигона Анхын на западном побережье страны. Ракета имеет длину 14 м, диаметр 1 м и массу 6 т. ЖРД тягой 12,5 тс[43] с вытеснительной подачей топлива кислород-керосин проработал 53 сек; полная продолжительность полета составила 231 сек, высота — 42 км, дальность — 80 км, максимальная скорость — 902 м/с.
Проектируемый трехступенчатый носитель KSLV–I, предназначенный для выведения на низкую околоземную орбиту ИСЗ массой до 100 кг, представлял собой связку трех блоков типа KSR-III (два боковых — первая ступень, центральный — вторая), третью ступень предполагалось создать на базе KSR-I (KSR-II). Было объявлено, что первый запуск KSLV–I с научно-технологическим спутником STSAT-2[44] (Science Technology Satellite-2) массой 100 кг на орбиту высотой 300х1500 км планируется на декабрь 2005 г.
Однако в 2004 г. правительство Республики Корея пересмотрело планы, определив, что к 2015 г. страна должна войти в десятку ведущих космических держав мира. Поскольку разработанная ранее программа имела весьма ограниченные цели и перспективы роста, было принято решение о ее кардинальной переработке. В новые планы вошло строительство космодрома на о-ве Венаро (Woenaro) в южной части Корейского п-ва, а российскому ГКНПЦ имени М.В.Хруничева был заказан проект серии довольно крупных космических РН на базе универсального ракетного модуля (УРМ) семейства носителей нового поколения «Ангара».
Решено также закупить в России 10 модулей УРМ с ЖРД — как первых ступеней нового варианта ракеты KSLV-1. РДТТ второй ступени создается в Корее с использованием отечественных технологий. Старт носителя со спутником STSAT-2 намечен на октябрь 2007 г.
Для запуска более тяжелых КА предполагается разработать носители KSLV–II и III. Ракета KSLV–II, первый старт которой запланирован на 2010 г., будет состоять из первой ступени российского производства и южнокорейской второй ступени с ЖРД[45]. Ее грузоподъемность ~1 т.
KSLV–III, запуск которой запланирован на 2015 г., будет трехступенчатым носителем, способным вывести многоцелевой спутник 1,5-тонного класса на круговую солнечно-синхронную орбиту высотой 700–800 км. Первая и вторая ступени ракеты — жидкостные, третья (апогейная) — твердотопливная. Как и в предыдущих случаях, первая ступень KSLV–III будет произведена в России.
Параллельно с проектированием РН ведутся разработки спутников — многоцелевых и КА связи. Основная цель этих работ — создание научно-инженерной базы для независимых ракетно-космических технологий, в т. ч. и оборонной направленности.
К настоящему времени Республике Корея удалось запустить несколько КА (как собственной разработки, так и созданных за рубежом по корейскому заказу) на американских, европейских, индийских и российских РН. Первый южнокорейский спутник собственной разработки — KOMPSAT массой 470 кг, изготовленный на базе стендовой модели американской фирмы TRW, — был запущен 21 декабря 1999 г. с космодрома Ванденберг (Калифорния, США) твердотопливной РН Taurus.
Ракета KSR-III (слева) и первый вариант носителя KSLV–I: 1 — головной обтекатель; 2 — полезный груз; 3 — РДТТ третьей ступени; 4 — система управления; 5 — баллон с гелием системы вытеснения основных компонентов топлива; 6 — бак горючего (керосин); 7 — бак окислителя (жидкий кислород); 8 — боковые ускорители; 9 — ЖРД, установленный в кардановом подвесе; 10 — аэродинамические стабилизаторы.
Многоцелевой спутник KOMPSAT (Фото с проекта KARI).
Ракетно-космические амбиции «Страны утренней свежести», с одной стороны, безусловно стимулируют прогресс корейской науки и техники, но, с другой стороны, вызывают обеспокоенность ее соседей — КНДР и Японии, а также неудовольствие США, которые активно блокируют распространение ракетных технологий даже в союзных Вашингтону государствах.
Космодром на о. Венаро должен иметь два стартовых сооружения (Фото с проекта KARI).
Иракский «разбег».
Арабский Ирак получил партию советских баллистических ракет Р-17 (именуемых на Западе SS-1b и Scud-B) с дальностью действия до 300 км в конце 1970-х — начале 1980-х гг. Этот ракетный комплекс был освоен иракской армией и послужил базой для собственных разработок.
22 сентября 1980 г. началась ирано-иракская война, во время которой западные страны более или менее открыто поддерживали Ирак. В частности, США предоставляли Багдаду снимки высокого разрешения со спутников-шпионов Keyhole, что позволило иракским штабам получить представление и опыт работы с космической информацией.
Сообщалось, что Ирак начал национальную ракетную программу в 1982 г. Были инициированы проекты БР, способных достичь Тегерана — столицы Ирана, расположенной примерно в 600 км от ирано-иракской границы.
Ирак объединил усилия с Египтом и Аргентиной в разработке двухступенчатой твердотопливной ракеты Condor-2, способной доставить боеголовку массой ~500 кг на дальность до 750 км. В проекте, известном также как Badr-2000, принимали участие инженеры Западной Германии, Италии и Бразилии.
Ракета Badr-2000 (Condor-2) (Фото с сайта www.machtres.com).
В марте 1986 г. по Багдаду запустил свои первые «Скады» Иран; это заставило иракцев ускорить работы по собственной ракетной программе. Разработка велась (главным образом при помощи западногерманских специалистов) Группой по исследованиям и проектированию управляемой ракеты класса «поверхность — поверхность», которую возглавлял Амир Аль-Саади (Amir Al Saadi) под патронажем министра промышленности Хуссейна Камаля (Hussein Kamal), зятя президента Саддама Хуссейна (Saddam Hussein). 3 августа 1987 г. впервые была испытана ракета Al Hussein на базе удлиненной Р-17, которая впоследствии широко применялась как во время ирано-иракской войны, так и в период «Войны в Заливе 1991 г.».
Полагают, что информация об израильском проекте ИСЗ Ofeq/ РН Shavit (на базе ракеты Jericho) стимулировала в конце 1980-х гг. появление программы создания иракского космического носителя и национального спутника.
Очевидным казался выбор РН на базе «Кондора-2», но этой программе был нанесен смертельный удар: в апреле 1987 г. Западная Германия и Италия подписали Соглашение о режиме нераспространения ракетных технологий и отозвали своих специалистов из Ирака. А в июле 1988 г. в США был арестован Абдель Кадер Хелми (Abdel Kader Helmy), которого считают ключевой фигурой проекта «Кондор».
Исходная ракета ближнего радиуса действия Р-17 (Scud-B)… (Фото с сайта www.dpileggispicks.com).
В ноябре 1987 г. представители Ирака вошли в контакт с известным специалистом в области баллистики — канадцем Джеральдом Буллом (Gerald Bull). Тот прилетел в Багдад 15 января 1988 г. на встречу с Х.Камалем и А.Аль-Саади. Его проинформировали об иракских планах запуска ИСЗ. В частности, Аль-Саади сообщил, что иракские, египетские и бразильские инженеры работают над проектом РН на базе «Скада», но столкнулись с рядом технических проблем в части конструкции и динамики полета. Дж. Булл согласился провести консультации через свою брюссельскую фирму Space Research Corporation (SRC). Булл предложил также применить для запуска ИСЗ суперпушку (т. н. проект «Вавилон»), которую он мог бы создать на базе своих исследований по проекту HARP (вывод прототипов малых спутников Армией США в 1960-х годах).
…и иракские БРСД на ее базе (Фото с сайта www.dpileggispicks.com).
К маю 1988 г. была готова детальная спецификация «Вавилона». Булл вознамерился построить невероятную машину со стволом метрового калибра длиной 156 м и массой 1665 т. Кроме того, канадец заявил, что предварительно ему придется построить прототип суперпушки калибром «всего лишь» 350 мм и массой 113 т. С помощью этого «мини-Вавилона» Булл планировал испытать специализированные снаряды.
SRC изучила четыре варианта космической РН на базе связок стандартных ракет Scud диаметром 80 см (названных S80), а также удлиненных и расширенных до диаметра 100 см (S100). В частности, «конфигурация А» имела четыре S80 (в качестве первой ступени) вокруг одной S100 (вторая ступень) по типу советской Р-7 и третью ступень длиной 2,2 м и массой 1000 кг. «Конфигурация B» использовала пять (вместо четырех) S80 на первой ступени. Третий вариант включал шесть S80. Наконец, четвертая — самая мощная — версия, помимо шести S80 на первой ступени, имела две установленные рядом S100 в качестве второй ступени.
Дж. Буллу удалось решить задачу сборки воедино пяти «Скадов» — и таким образом создать работоспособную первую ступень будущей РН, которую заказчик назвал «Аль-Абейд» (al Abid, «правоверный»). При этом Булл обнаружил, что иракские, египетские и бразильские инженеры работали с искаженной базой данных, причем источником ошибок была аэродинамическая труба. В мае 1989 г. в Багдаде состоялась большая выставка вооружений, которая привлекла внимание всего мира. Огромный интерес — и тревогу противников Ирака — вызвали модели двух гигантских пушек, выполненные в натуральную величину. С новой силой вспыхнули дискуссии относительно ракетной программы Саддама Хуссейна. А космические амбиции Ирака, насколько они реальны?
Сверхдальнобойное орудие «Вавилон» Джеральда Була, построенное в Ираке (Фото с сайта www.globalsecurity.org).
Джеральд Булл со снарядом Marlet 1.
Ракета «Аль-Абейд» имела массу 48 т, высоту 17 м и стартовую тягу 70 тс. С ее помощью предполагалось вывести на низкую околоземную орбиту спутник массой до 150 кг. Стартовый стол для РН был построен к западу от Багдада и получил имя «Аль-Анбар» (al Anbar) — по названию одной из областей Ирака.
Первый летный прототип «Аль-Абейда» состоял из «живой» первой ступени и макетных второй и третьей ступеней и был предназначен, в первую очередь, для проверки системы управления первой ступени. 5 декабря 1989 г. прототип был запущен, летел в течение 130 сек и достиг максимальной высоты примерно 25 км. 7 декабря с официальным сообщением об этом пуске выступил Х.Камаль, который заявил также, что в разработке находится и боевая ракета «Таммуз» (Tammuz) с максимальной дальностью до 2000 км.
Операция «Шок и трепет» завершена. Уничтоженные «Скады» и довольный победитель в тронном зале дворца диктатора. Грозные ракеты остались лишь на картинах (Фото с сайта www.dpileggispicks.com).
Видеокадр старта ракеты-носителя «Аль-Абейд» (Фото с сайта www.globalsecurity.org).
На следующий день Государственный департамент США подтвердил факт проведения запуска. Тогда же появилось сообщение о том, что NORAD[46] «зафиксировал три новых объекта в космосе». В современной версии каталога ничего похожего нет, не говорили об орбитальном запуске и сами иракцы. Но миф об иракском ИСЗ родился, вскоре оброс новыми версиями и подробностями («3-я ступень вышла на орбиту и совершила 6 витков вокруг Земли») и не исчез до сих пор. Полагают, его задачей было утверждение тезиса, что «космос» нужен руководству Ирака как прикрытие для создания боевых систем — пушек и ракет — способных метать «специальные» боезаряды на сверхдальние расстояния (до Израиля, например).
В конце концов, два события привели к полному прекращению иракской ракетной программы. Булл был застрелен в Брюсселе в марте 1990 г. (как предполагают, по заданию израильской разведки «Моссад»). А поражение в «Войне в Заливе» лишило Ирак всего ракетного арсенала с дальностью более 150 км, включая РН «Аль-Абейд» (попутно отметим, что стартовый стол «Аль-Анбар» был в ряду главных целей американских воздушных ударов в январе 1991 г.).
«Вавилон» так никогда и не выстрелил… (Фото с сайта www.globalsecurity.org).
Разработка национального спутника-фоторазведчика велась иракцами в медленном темпе, по крайней мере, до 2002 г., несмотря на то, что подходящей РН для его запуска у страны не было. Документация по этому спутнику была изъята 22 декабря 2002 г. представителями ООН при инспекции космического научно-исследовательского центра «Аль-Баттани» (Al Battanee) в Багдаде.
Падение тоталитарного режима Саддама Хуссейна, оккупация, последующий террористический хаос, развал экономики и государственных институтов, обострение курдской проблемы, спорадические распри между шиитами и суннитами, др. позволяют говорить о том, что космической программы Ирака больше нет.
Космические проекты Исламской Республики Иран.
5 января 2004 г. на Тегеранской аэрокосмической конференции министр обороны Исламской Республики Иран адмирал Али Шамхани (АН Shamkhani) заявил, что в ближайшие 18 месяцев «Иран станет первой исламской страной, которая выйдет в космос с собственным спутником, запущенным с собственной стартовой площадки». Сообщалось также, что тогдашний президент Ирана Мохаммад Хатами (Mohammad Khatami), являясь одновременно главой национального космического агентства (!), держит программу под своим личным контролем.
Таких официальных заявлений было немало, но станет ли так в действительности? По мнению ряда аналитиков, шаги, предпринимаемые иранскими университетами и промышленностью по налаживанию научно-технического сотрудничества с государствами-членами «космического клуба», вполне могут в обозримой перспективе привести к появлению национальной космической ракеты-носителя и спутника.
В июне 2003 г. Тегеран завершил испытания баллистической ракеты Shahab-3[47] («Метеорит», фарси), способной доставить боеголовку массой ~1000 кг на дальность до 1300 км. В том же году «Шахаб-3» поступил на вооружение; летом 2004 г. состоялись первые пробные пуски доработанного варианта изделия, а в октябре Иран официально сообщил о модернизации ракеты.
Оснастив «Шахаб-3» второй ступенью, вполне можно создать прототип космической РН. По оценкам некоторых зарубежных экспертов, такая ракета могла бы вывести на орбиту КА массой до 20–50 кг.
Наконец, следующий шаг — создание еще более крупной трехступенчатой РН, которую иногда условно обозначают «Шахаб-4» (или -5).
Пуск ракеты «Шахаб-3».
Запуск первого иранского ИСЗ Safir-313 («Посланник»)[48] возможно, будет произведен с недавно построенного стартового комплекса «Дашт-э-Кабир» (Dasht-E-Kabir). Полагают, что этот ИСЗ разработан в сотрудничестве с итальянской фирмой Carlo Gavazzi Space.
Тегеран официально объявил об участии в разработке двух миниспутников: технологического Mesbah («Маяк») для обучения национальных кадров и многоцелевого SMMS (Small Multi-Mission Satellite).
Аппарат SMMS предполагается вывести на солнечно-синхронную орбиту высотой 796 км китайской РН «Чан Чжэн-4» с полигона Тайюань (вместе с китайским метеоспутником). Малый многоцелевой ИСЗ создается в рамках совместной программы стран Азиатско-Тихоокеанского региона, в которой участвуют Китай, Иран, Южная Корея, Монголия, Пакистан, Таиланд и Бангладеш. Аппарат стартовой массой 380 кг на базе платформы CAST-9688 (разработки Академии космической технологии КНР) будет нести ПГ массой 100 кг, в т. ч. многоспектральную твердотельную видеокамеру с разрешением 20 м, широкополосную камеру с разрешением 250 м, оборудование связи и систему передачи данных.
Макет иранской ракеты-носителя IRIS и головного блока со спутником (Фото Iran Daily).
2 сентября 2004 г. иранское государственное телевидение сообщило, что спутник Mesbah стартует в 2005 г., и показало прототип ИСЗ. Космический аппарат массой 69 кг (75 кг по другим данным) имеет форму параллелепипеда высотой 50 см. Его планировалось вывести на орбиту высотой ~900 км с помощью российской РН.
При содействии специалистов из Индии велось строительство Центра управления полетами вблизи Тегерана, в местности Варамин. К моменту запуска спутника Центр, как полагают, будет полностью введен в эксплуатацию и сможет получать и обрабатывать заданный объем информации.
Прототип спутника Mesbah (Фото Iran Daily).
24 января 2005 г. правительство Российской Федерации санкционировало запуск иранских спутников Mesbah и Sinah из Плесецка ракетой-носителем «Космос-3М». Старт состоялся 27 октября 2005 г., но на борту российской ракеты размещался только один иранский аппарат — Sinah-1. Этот ИСЗ массой 160 кг был изготовлен по иранскому заказу омским ПО «Полет» на базе платформы «Стерх» (фото внизу) и оснащен двумя камерами с разрешением 50 и 250 м.
Что же даст Ирану «прорыв в космос»? Ну, во-первых, мощнейший аргумент в его претензиях на лидерство в исламском мире; во-вторых, уважаемое всем мировым сообществом членство в «космическом клубе»; в третьих, необыкновенно благородный, сильный и продолжительный стимул для рывка в сфере образования, науки, передовых (в т. ч. оборонных) технологий… Есть еще в-четвертых, в-пятых и так далее. Бесспорно одно: задача поставлена — она решается…
Фото А.Бабенко.
«Самостийный» космос Украины.
В «космический клуб» Украина попала нетрадиционным путем. После развала СССР страна унаследовала мощнейший ракетный центр в Днепропетровске и целый ряд первоклассных предприятий РКТ в Киеве, Харькове и т. п. Инерция налаженного производства и прочность сложившейся кооперации (с российскими предприятиями), «подкрепленная» выдвижением руководителей «оборонки» на самые высокие государственные посты[49], предотвратила коллапс украинской аэрокосмической индустрии.
Более того. Стране удалось пробиться на рынок пусковых услуг в союзе с коллегами из Российской Федерации, Соединенных Штатов и Норвегии — имеется ввиду международный проект «Морской старт» (Sea Launch) на базе РН «Зенит». В заделе — новые интересные проекты с Россией, Бразилией, Египтом, Евросоюзом, США…
Стоит упомянуть и наземные средства Украины — Евпаторийский центр с уникальным антенным комплексом. Таких антенн, как РТ-70, в мире всего шесть. Она уже сопровождала дальние космические миссии, в частности, европейский Mars Express.
Первым ИСЗ серии «Космос», запущенным 16 марта 1962 г., был ДС-2 («Днепропетровский спутник-2»). И спутник, и его ракета-носитель 63С1 («Космос-1» на рис.) создавались в Днепропетровске, Украина (Рисунок А.Шлядинского).
Но мир жесток, а конкуренция (в т. ч. недобросовестная) безжалостно истребляет слабейших. На Украине нет самодостаточной структуры полномасштабной разработки, производства, испытаний, запуска и управления объектами РКТ… Отсутствие же полной национальной кооперации означает, что в любых переговорах по новым проектам будет участвовать третья сторона, обеспечивающая техническую реализацию недостающих элементов. При этом не исключено, что третий участник будет иметь собственные политические, экономические или иные интересы, отличные от интересов Украины. В этой связи вопрос первостепенной важности — КАК будет развиваться «самостийный украинский космос»?
М.К.Янгель, Главный конструктор советской ракетно-космической техники, руководитель НПО «Южное» в период с 1954 по 1974 г.
Представляется, что создание в стране «самодостаточной» космической отрасли (путь, выбранный Китаем и Индией) пока невозможно. Нет ресурсов для реализации такой стратегии: украинский бюджет дефицитен, а надо еще выполнять социальные обещания «оранжевой революции». И главное — «самостийный» путь противоречит нынешнему политическому курсу Украины, ориентированному на Запад. Основной вопрос здесь состоит не в том, что хочет получить Украина от сотрудничества с Соединенными Штатами и Западной Европой, а в том, что она может им предложить.
США, «осваивая» до 75 % мирового космического бюджета, традиционно не склонны поддерживать «забугорные» высокие технологии. Непреложный принцип работы ЕКА — свое участие в совместных программах финансирует сам участник.
Поскольку из госбюджета реально выделяется «на космос» лишь около 10 млн $ (в пять раз меньше суммы, которая предусмотрена в Законе Украины о национальной космической программе), «съеживание» аэрокосмической индустрии необратимо.
ДС-2, предназначенный для исследований ионосферы Земли, представлял собой сферический контейнер со стержневыми антеннами, снабженный передатчиком системы «Маяк» с питанием от аккумуляторов. В известном смысле, это и был «первый украинский спутник», но во времена СССР «национальный уклонизм» не приветствовался…
В этих условиях Украина может выступать лишь как партнер — и прежде всего, для России.
27 мая 2005 г. на совещании по вопросам космической отрасли новый президент Украины В.Ющенко поставил задачу разработать программу ее возрождения на базе «здорового «эго» людей, для которых космос является профессией».
В советские времена «Южный машиностроительный завод» («Южмаш»), который входит в НПО «Южное» (Днепропетровск) и носит ныне имя А.М.Макарова, выпускал до 100 межконтинентальных ракет в год. Сейчас он производит ежегодно не более пяти-шести «Зенитов», в основном, для компании Sea Launch, и два-три «Циклона-3» для России и Украины. На «Южмаше» осталось примерно 16 тыс работников — против 52 тысяч во времена СССР. Число сотрудников Государственного конструкторского бюро (ГКБ) «Южное» имени М.К.Янгеля уменьшилось с 10 до 4,5 тысяч. О доходах предприятия не сообщается, т. к. они «не отражают реального положения дел». Загрузка фирмы такова: 34 % объема работ проводится для Национального космического агентства Украины (НКАУ), 32 % — для Федерального космического агентства России, 27 % — для международных программ (среди которых Sea Launch) и 7 % — по конверсии (сельскохозяйственные машины, тракторы, автобусы и т. п.). Павлоградский филиал ГКБ «Южное», который занимался созданием твердотопливных двигателей, уже не имеет «работы по специальности». Здесь сначала строили, а затем утилизировали «железнодорожную» МБР SS-24, но сейчас заинтересованная в последнем американская сторона прекратила финансирование. В 2004 г. объем годовых продаж харьковского ОАО «Хартрон» (специализировалось на разработке и производстве систем управления ракет) составил примерно 200 тыс $, что свидетельствует о явной деградации данного направления.
Новое руководство НКАУ планирует закрепиться на рынке пусковых услуг[50], а также заложить стратегические перспективы с высокой коммерческой отдачей. Украинские представители проводят активный зондаж настроений в ЕКА и EADS, чтобы привлечь европейцев к сотрудничеству (в контексте этих усилий ГКБ «Южное» открыло свое постоянное представительство в Брюсселе).
Макеты существующих и перспективных РН украинской разработки (Фото В.Аврамова).
Пока ведутся работы лишь по одной-единственной программе создания малой РН Vega, которая на 65 % финансируется Италией («Южное» — субподрядчик Fiat Avio). На основе камеры сгорания двигателя РД-869 собственной разработки ГКБ создает ЖРД VG143.9000.C для четвертой ступени этой ракеты. Тяга — 250 кгс; топливо подается пневмонасосами (в то время как исходный ЖРД имел турбонасосную систему подачи). Первый полет «Веги» намечен на 2007 г.
Десять лет назад ГКБ «Южное» предлагало запускать РН «Циклон» и «Зенит» с европейского космодрома Куру во Французской Гвиане. Были проведены переговоры с фирмой Aerospatiale, но Европа предпочла российскую РН «Союз».
В 2007 г. ГКБ «Южное» предполагает запустить первую РН «Зенит-М» (двухступенчатый вариант «Зенит-2M» и трехступенчатый — «Зенит-3M») с космодрома Байконур. Программа «Наземный старт» будет осуществляться компанией «Международные космические услуги», образованной украинскими и российскими фирмами, при поддержке Sea Launch Company.
Есть планы запусков модернизированного варианта «Циклона-2» с Байконура (в российских арсеналах осталось еще семь ракет). «Южное» совместно с ОКБ Макеева (Миасс), КБТМ и предприятием «Вымпел» (Москва) разрабатывает вариант РН «Циклон-2К» с новым ГО и третьей ступенью. В рамках создания национального телекоммуникационного спутника «Лыбидь» ГКБ «Южное» изучает целесообразность закупки комплектующих элементов КА в США, Европе или Японии. Кроме того, предприятие готово принять участие в создании общеевропейской спутниковой системы навигации Galileo.
В области пилотируемых полетов ГКБ «Южное» сотрудничает по проекту «Зенит» — «Клипер» с российской РКК «Энергия».
На перспективу разработан проект РН нового семейства «Маяк», которые должны прийти на смену «Циклонам» и «Зенитам».
Имеются наработки по созданию авиационно-космических систем на базе самолетов-носителей украинского АНТК имени О.К.Антонова Ан-124 «Руслан» и Ан-225 «Мрия» — «Свитязь» и «Ориль».
Будет ли это востребовано международным рынком? Поживем — увидим…
Казахстан: Байконур зовет.
Получив в наследство от распавшегося СССР самый знаменитый в мире космодром Байконур, Казахстан не сразу, но все больше и больше стал «поворачиваться лицом» к тем высоким ракетно-космическим технологиям, средоточием которых оказалась его территория. Действительно, стратегические выгоды для страны, если ей удастся войти в «космический клуб» и закрепиться в международной космической кооперации, столь значительны — речь идет, ни много ни мало, о «перворазрядном» или «третьеразрядном» качестве жизни казахстанцев в грядущем мире — что они постоянно находятся в фокусе внимания высшего государственного руководства.
Комплекс «Байтерек» с РН «Ангара-5» будет построен на Байконуре (Рисунок КБТМ).
Поскольку Байконур[51] остается и главным российским космодромом, планируется развивать его совместными усилиями. Начато строительство российско-казахстанского ракетно-космического комплекса «Байтерек», который будет готов к пускам в 2008–2009 годах. Стартовая площадка, создаваемая под РН «Ангара», располагается в 300-х метрах от ПУ «Протона» на 200-й площадке. Финансирование работ осуществляется за счет казахстанской стороны (~230 млн $). Россия не вкладывает средств, но является исполнителем работ[52]. Реализовывать проект будет совместное предприятие «Байтерек», принадлежащее двум сторонам в равных долях, на основании соглашения, подписанного в январе 2004 г. президентами В.В.Путиным и Н.А.Назарбаевым.
«Байтерек», по мнению специалистов, будет иметь высокий уровень экологической безопасности, поскольку двигатель РД-191 «Ангары» работает на кислородно-керосиновом топливе. Отмечается также, что «Ангара» может быть вдвое эффективнее зарубежных аналогов по соотношению «цена-качество». Модульный тип конструкции ракеты положен в основу семейства носителей легкого, среднего и тяжелого классов. С унифицированного стартового комплекса «Ангара» сможет выводить на низкие орбиты полезную нагрузку до 26 т, а на геостационарные — до 4,5 т.
Макет авиационно-космического комплекса «Ишим» (Фото А.Веловича).
«КазСат-1» (фото вверху) создан в ГКНПЦ им. М.В.Хруничева и запущен с помощью РН «Протон-К» с космодрома Байконур (Фото С.Сергеева).
На международном авиакосмическом салоне Asian Aerospace 2006, прошедшем в Сингапуре, казахстанская компания КазКосмос представила перспективный авиационно-ракетный комплекс средств выведения «Ишим», создаваемый на базе самолета МиГ-31Д и предназначенный для оперативной доставки на орбиту малых КА. По мнению казахстанских специалистов, в XXI веке потребуется выводить и поддерживать на орбите целые группировки таких спутников.
Комплекс состоит из двух самолетов-носителей, оснащенных трехступенчатой РН, а также воздушного командно-измерительного комплекса на базе самолета Ил-76МД. Взлетная масса самолета-носителя (модифицированный истребитель-перехватчик МиГ-31Д) с ракетой составит 50 т. РН имеет стартовую массу 10,3 т, длину 10,76 м и диаметр 1,34 м и сможет выводить на околоземные орбиты с наклонением 46° и высотой 300 км ПГ массой до 160 кг, или до 120 кг — на орбиту высотой 600 км.
Комплекс «Ишим» создается в коперации с российской авиастроительной компанией «МиГ» (разработчик самолета-носителя) и Московским институтом теплотехники (разработчик ракеты). Стоимость создания комплекса оценивается в 144 млн $.
Финансирование проекта осуществляет казахстанская сторона, которая планирует запустить с его помощью два спутника дистанционного зондирования Земли и шесть КА для мониторинга состояния нефтегазовых инфраструктур.
Разработчик РН «Протон» и «Ангары» — Центр имени М.В.Хруничева — выиграл тендер на создание первого казахстанского спутника связи «КазСат». 18 июня 2006 г. ИСЗ, в зону обслуживания которого входят Казахстан, страны Центральной Азии и центральная часть России, был успешно выведен на орбиту. Для управления им в г. Акколь построена современная наземная станция.
Прагматичный подход Астаны к сохранению и развитию сотрудничества с Россией — и на этой основе «встраивание» страны в ряд ведущих космических держав — как представляется, обеспечит прогресс Казахстана на долгие годы вперед, и в этой связи заслуживает самой высокой оценки.
Коммерческая затея Лутца Кайзера.
В «Большой космический клуб», помимо отдельных государств и объединений стран, пытался вступить «частник».
Эта история началась более 30 лет назад. Лутц Кайзер (Lutz Kaiser) — в свое время студент Эйгена Зенгера (Eugen Sanger), крупнейшего баллистика III Рейха и изобретателя межконтинентального бомбардировщика-«антипода» — выдвинул концепцию дешевых модульных ракет-носителей. Он основал акционерное общество OTRAG[53] со штаб-квартирой в Штуттгарте, ФРГ, и привлек к сотрудничеству ряд специалистов, в т. ч. Курта Дебуса (Kurt Debus), который на пике своей карьеры являлся руководителем американского Космического центра имени Дж. Ф.Кеннеди[54].
Семейство РН OTRAG было задумано как связка унифицированных ракетных модулей[55]. Единичный модуль включал топливный бак диаметром 0,3 м (с окислителем — азотной кислотой или горючим — керосином) и ЖРД тягой 3 тс. Система подачи — вытеснительная (сжатый воздух). Каждая ступень состояла из некоторого числа модулей, объединенных в пары: один модуль — с окислителем, другой — с горючим. Расположение ступеней параллельное — концентрическими «слоями». Первая ступень — внешний «слой», последняя — внутренний. При отделении ступени сбрасывается очередной «слой». Согласно проекту, в зависимости от потребных энергетических характеристик варьируются число ступеней (до шести), число блоков (до 600) и длина каждого блока (до 40 м). Обечайки баков изготавливаются из нержавеющей стали (на автоматической установке подобно трубам), днища — из алюминиевого сплава. Управление полетом — путем дросселирования тяги части двигателей. Трехпозиционные клапаны на каждом ЖРД, связанные с вычислительным устройством, могут обеспечить работу на номинальной тяге, на 50 % номинальной тяги или выключение в полете. Вычислительные устройства работают в комплексе с инерциальной системой управления РН[56].
Предполагаемая эволюция ряда ракет OTRAG (Рис. с сайта www.bernd-leitenberger.de).
Стартовый комплекс ракеты — разборный, рассчитанный на транспортировку самолетом.
Предполагался «быстрый» ввод в эксплуатацию РН OTRAG-200, способной вывести на орбиту ПГ массой до 200 кг. Диаметр этой ракеты составлял 1,5 м, длина — около 20 м.
Сборка, подготовка и пуск ракеты OTRAG из четырех единичных модулей. Фотографии дают представление о размерах и относительной простоте конструкции (Фото с сайта www.bernd-leitenberger.de).
Далее должна была начаться эксплуатация носителя OTRAG-2500 (ПГ до 2500 кг). Диаметр этой ракеты достигал 4 м, длина — 27 м.
В конце концов планировалось создать OTRAG-10000 для доставки 10 т на низкую орбиту или 2 т — на геостационарную. Эта ракета при стартовой массе 1000 т и стартовой тяге 1300 тс должна была иметь длину 30–35 м и поперечный размер около 8 м.
Для летных испытаний РН в декабре 1975 г. был создан полигон в Заире. В мае 1977 г. и июне 1978 г. здесь были проведены пуски экспериментальных одноступенчатых ракет, каждая из четырех модулей. При первом пуске изделие поднялось на высоту 20 км, при втором — на 30 км. Третий пуск посетил диктатор Заира Мобуту (Mobutu). Но тут сказался «генеральский визит-эффект» — пуск был аварийным.
Экспериментальная высотная ракета OTRAG с четырьмя модулями (Рисунок Peter Alway).
…Уже в 1978 г. капитал «предприятия» достигал 76 млн. марок, потребные поступления за пять лет оценивались в 500 млн. марок, и деньги продолжали прибывать — при этом число акционеров перевалило за тысячу! По сведениям французской газеты Monde, даже правительство ФРГ поддержало деятельность объединения OTRAG и до 1974 г. предоставило ему субсидии на общую сумму 6 млн. марок.
В 1978 г. был создан парижский филиал объединения, получивший наименование OTRAG-FRANCE. Его задачи: «НИР в области вывода спутников на орбиту» (Л. Кайзер).
Первоначально основные элементы экспериментальных ракет OTRAG изготавливались в небольшой мастерской в Штуттгарте. В дальнейшем планировалось строительство завода с численностью персонала ~2000 человек для серийного производства модулей РН. Президент акционерного общества Лутц Кайзер в июне 1978 г. заявил, что ведутся переговоры с семью странами, в том числе с Бразилией, о создании на их территории такого завода, а также полигона для запусков ракет OTRAG. Но…
Программа разработки «простых и дешевых» РН OTRAG встретила жесткое противодействие со стороны США. А поскольку «священное» право частной собственности не позволяло просто прихлопнуть «дело», был задействован план его постепенного удушения.
Сначала правительство ФРГ приняло решение, по которому на вывоз из страны продукции объединения OTRAG каждый раз требовалось специальное разрешение. Как сообщало западногерманское агентство DPA, «правительство делает все, чтобы отмежеваться от этой деятельности, подчеркивая, что OTRAG — чисто коммерческое предприятие».
Потеряв поддержку на родине, Кайзер обратился за «государственным флагом» (т. к. считалось, что космические объекты не может запускать частное лицо или компания) сначала к Заиру, затем к Ливии и даже к нейтральной Швеции.
Но «длинные руки» сильных мира сего, финансовые трудности и неблагоприятные стечения обстоятельств преследовали его повсюду.
В апреле 1979 г., вследствие политических изменений в стране, правительство Заира расторгло договор с обществом OTRAG.
«Независимые» ракетчики перебрались в Ливию. Лидер страны Муамар Каддафи (Muamar Gadafi) был не против разработки подобной «потенциально полезной» техники. Пуски ракет (в «моноблочном» исполнении, с одним модулем, оснащенным двигателем) проводились на полигоне Тавива (оазис Шеба в пустыне Сахара), в 600 км от г. Триполи. С марта 1981 г. по декабрь 1982 г. ракеты стартовали более десятка раз. Сведения о достигнутых результатах крайне противоречивы.
Конгломерат политических, финансовых и все прочих проблем в очередной раз обрушился на OTRAG — и полигон в Ливии пришлось оставить.
Последний старт (аварийный) ракеты OTRAG состоялся с шведского полигона Кируна в сентябре 1983 г.
Американцы «перекрыли кислород» повсеместно, а противостоящий им СССР примитивные ракеты «из водопроводных труб» не интересовали. «Удушение» состоялось. Разработанные технологии и оборудование были куплены некоей «неизвестной компанией», и в 1986 г. акционерное общество OTRAG прекратило свою деятельность.
Обратите внимание: насколько совершенна была германская ракетная техника периода Второй мировой войны, и как она «глубоко пала» позже (немецкая ракета, сравнимая по массе с «Фау-2», появилась в «железе» и впервые слетала в космос только в 1996 г. — это была относительно «простая» верхняя ступень на долгохранимом топливе для РН Ariane 5!..). Яркое свидетельство примата «политики» над «техникой»!
Стартует четырехмодульный OTRAG. Резкий маневр после пуска позволяет предполагать отказ системы управления (Рис. с сайта www.bernd-leitenberger.de).
Стартовая команда OTRAG со своим детищем на полигоне в Заире (Рис. с сайта www.bernd-leitenberger.de).
Попробуем на примере инновационного проекта OTRAG выявить его основополагающие моменты: достоинства и недостатки концепции, особенности принятых технических решений, перспективы негосударственного «коммерческого космоса».
Итак, концепция. Во-первых, декларировалась максимальная унификация и стандартизация конструкции РН и технологии производства. Во-вторых, максимальная дешевизна. Одна автоматическая установка могла выпускать до 10 топливных баков в сутки. Двигатели имели исключительно простую конструкцию из недефицитных материалов. Единственными движущимися частями единичного модуля являлись два шариковых клапана подачи топлива в ЖРД. И в-третьих, использование азотной кислоты и керосина — топливной пары, стоимость которой невысока.
Но, с другой стороны, РН с четырьмя «слоями», включая центральный блок, будет иметь 38 модулей, а с пятью «слоями» — уже 64! Самое «вредное» свойство данной концепции таково, что если хотя бы один модуль не сработает, ракета, по-видимому, выйти на орбиту не сможет.
Если принять надежность единичного модуля 95 %, то для РН с пятью «слоями» общая надежность составит около 4 %. С 99 %-ной (рекордной!) надежностью единичного модуля можно получить общую надежность РН на уровне 53 %. Столь низкие показатели ставят на предложенной концепции жирный крест.
Так что же, «коммерческому космосу» не бывать? Отнюдь. Уже давно и успешно функционируют ИСЗ коммерческих организаций: телекоммуникационные, дистанционного зондирования Земли; активно пополняется парк студенческих и образовательных научных спутников; в перспективе ожидается появление «воплощенной идеи космического бизнеса» — т. н. «космической рекламы»[57]. И так далее, и так далее…
Кинограмма пуска одномодульного прототипа OTRAG с полигона Тавива в Ливии. Обратите внимание на тип ПУ (Рис. с сайта www.bernd-leitenberger.de).
Уже были попытки — в частности, в США — создания коммерческих (частных) ракет-носителей, в т. ч. многоразового применения.
«Тяжелый OTRAG» при взлете меньше всего напоминает РН в ее современном представлении (Рис. с сайта www.bernd-leitenberger.de).
Базирование РН на корабль (остров в океане) или самолет, в принципе, решает проблему космодрома с районами отчуждения (полями падения отработавших частей) на суверенных территориях.
Апофеоз — фантастический монстр OTRAG-10000 — как он представлялся своим создателям (Рис. с сайта www.bernd-leitenberger.de).
Таким образом, «членский билет» «Большого космического клуба» — собственный космодром, собственная РН, собственный КА — вполне «по карману» заинтересованной частной компании. Как представляется, дело только времени — появление «негосударственного космоса» под коммерчески привлекательную техническую и бизнес-идею.
Заключение.
История человечества — это непрерывное стремление вперед. Но куда конкретно? Ведь у каждого этноса, государства, класса, профессиональной группы и т. д. СВОЕ понимание «лучшего будущего» и «достойного места» в мировом социуме. В случае стран «космического клуба» все просто — стоит лишь соотнести их перечень с главнейшими геополитическими «цивилизациями» современности. Действительно, это Россия, Соединенные Штаты, Европа, Китай, Индия, в перспективе — Латинская Америка и Арабский (исламский) Восток, а также отдельные «мини-цивилизации» Япония, Израиль, КНДР…
Не секрет, что в результате развернувшегося процесса глобализации «выживут» лишь «пассионарные» (т. е. прилагающие сверхусилия) в техническом плане субъекты; все остальные, какими бы прекрасными и добродетельными они не были, как самостоятельные политические игроки исчезнут. Но что значит — сверхусилия?
Приведем пример: ракетно-космическая техника НЕЗАВИСИМО от уровня своего технического совершенства вкупе с ядерными боезарядами (также независимо от их технического совершенства) представляет собой оружие ПЛАНЕТАРНОГО масштаба, считаться с которым вынуждены все без исключения потенциальные агрессоры. И это КАРДИНАЛЬНОЕ отличие РКТ, скажем, от электроники, транспортной индустрии или биотехнологий.
Это критически важно для устойчивости «цивилизаций», особенно тех, где традиционным является примат «духовных» ценностей над «материальными». Почему? В условиях истощения природных ресурсов Земли, ухудшения экологии, роста народонаселения в беднейших странах «третьего мира», эгоистического нежелания «золотого миллиарда» менять базисные технологии своего процветания и т. д. и т. п., как представляется, ГЛАВНЫМ итогом глобализации станет формирование новой системы общепланетарных ценностей, новой парадигмы развития общества, новой философии НА СУЩЕСТВЕННО НЕМАТЕРИАЛЬНОЙ ОСНОВЕ. А значит, неважно, какая из «цивилизаций» выглядит «круче» на старте глобализации — важно, какие доберутся «до финиша»…
Другим «эксклюзивным» эффектом РКТ является сам факт выхода в бесконечный космос. Трудно переоценить этот сверхпозитивный для человечества пример. Грандиозные свершения подобного рода «поднимают планку» самооценки — и соответственно, моральный настрой общества на прогресс — исключительно высоко.
Помните, у Р.Рождественского («Пятнадцать минут до старта»):
… Я славлю такую войну! Войну с неизвестностью, тайнами и темнотой. Войну, участье в которой — огромная честь. В подобной войне есть присяга и гордость своя. Погибшие есть в ней. Пропавшие без вести есть. И есть полководцы, и есть рядовые, как я… Проверено сердце. Моторы надежны. Итак, начнись, закипи над планетой, высокая песня! Победная песня космических первых атак!..Наконец, третьим важнейшим результатом обладания ракетно-космической технологией является наличие неограниченной ПЕРСПЕКТИВЫ ее развития. Это — путь в будущее, безграничное поле приложения творческих сил и способностей, новый «ноосферный»[58] масштаб цивилизационной деятельности как в научно-инженерных, так и в гуманитарных областях.
Переходя к «космическому клубу», еще раз зафиксируем: зародившись как ТРИУМФ РАКЕТЫ, где ПЕРВЫЙ национальный ИСЗ являлся скорее СИМВОЛОМ, чем реальной научной лабораторией, развиваясь как средоточие самых современных научно-инженерных достижений, являясь ЕДИНСТВЕННЫМ инструментом «физического» проникновения человечества во внеземелье — ракетно-космическая техника играет в настоящее время также роль важнейшего конструктивного фактора, запускающего и активно поддерживающего объединительные тенденции мирового сообщества.
Беспрецедентное по масштабам своей цивилизационной значимости проникновение человечества в космос неуклонно нарастает, оно служит своеобразным «стержнем» и движущим стимулом научно-технического прогресса планеты Земля, воплощением надежд о бессмертии РАЗУМА…
Принятые сокращения.
АК — азотная кислота.
АН — Академия наук.
AT — азотный тетроксид.
БР — баллистическая ракета.
БРСД — баллистическая ракета средней дальности.
ВВС — военно-воздушные силы.
ВМС — военно-морские силы.
ГКБ — государственное конструкторское бюро.
ГКЖ — герметичная кабина животного.
ГО — головной обтекатель.
ГЧ — головная часть.
ДУ — двигательная установка.
ЖВ — жидкий водород.
ЖК — жидкий кислород.
ЖРД — жидкостный ракетный двигатель.
ИК— инфракрасный (-ая).
ИП — измерительный пункт.
ИСЗ — искусственный спутник Земли.
КА — космический аппарат.
КБ — конструкторское бюро.
КВО — круговое вероятное отклонение.
КИК — командно-измерительный комплекс.
КРЛ — командная радиолиния.
ЛА — летательный аппарат.
ЛКИ — летно-конструкторские испытания.
МБР — межконтинентальная баллистическая ракета.
МГГ — Международный геофизический год.
МИК— монтажно-испытательный корпус.
МО — министерство обороны.
НДМГ — несимметричный диметилгидразин.
НИИ — научно-исследовательский институт.
НИОКР — научно-исследовательская и опытно-конструкторская работа.
НИП — наземный измерительный пункт.
НИР — научно-исследовательская работа.
ПВО — противовоздушная оборона.
ПГ— полезный груз.
ПРО — противоракетная оборона.
ПС — простейший спутник.
ПУ — пусковая установка.
РДД — ракета дальнего действия.
РДТТ — ракетный двигатель твердого топлива.
РКТ — ракетно-космическая техника.
РЛС — радиолокационная станция.
РН — ракета-носитель.
РСУ — реактивная система управления.
СБ — солнечная батарея.
СЕВ — служба единого времени.
СМ — Совет министров.
СМИ — средства массовой информации.
СТУ — стартовый твердотопливный ускоритель.
СУ — система управления.
ТНА — турбонасосный агрегат.
УРМ — универсальный ракетный модуль.
ЦБ — центральный блок.
ЦК — Центральный комитет.
ЭВМ — электронно-вычислительная машина.
ЭП — эскизный проект.
Основные источники.
1. Бажинов И.К., Максимов Г.Ю. Об исследованиях возможностей создания в СССР первых мощных составных ракет и искусственных спутников Земли // Исследования по истории и теории развития авиационной и ракетно-космической техники. Выпуск 7. — М: Наука, 1989.
2. Тихонравов М.К. Пути осуществления больших дальностей стрельбы ракетами (Доклад в Акад. Артилл. наук 14 июля 1948 г.) / Комм. Ю.В.Бирюкова // Из истории авиации и космонавтики. Вып. 67. — М.: ИИЕТ РАН, 1995.
3. С.П.Королев и его дело. Свет и тени в истории космонавтики. Избранные труды и документы. / Под общ. ред. акад. Б.В.Раушенбаха. / Сост. Г.С.Ветров. — М.: Наука, 1998.
4. Ракетно-космическая корпорация «Энергия» имени С.П.Королева. 1946–1996./ Гл. ред. Семенов Ю.П. — М.: РКК «Энергия» имени С.П.Королева: Менонсовполиграф, 1996.
5. Черток Б.Е. Ракеты и люди. — М.: Машиностроение, 1995, 1996.
6. Порошков В.В. Создание и запуск первого спутника. Предыстория. // Новости космонавтики, т.12, № 10 (237), 2002.
7. Незабываемый Байконур. Сборник. / Под общ. ред. ген. — полк. Герчика К.В. — М., 1998.
8. Космодром Байконур в начале пути. Очерк об испытателях и специалистах космодрома Байконур. / Отв. ред. Н.А.Луковкин. — Байконур, 1992.
9. Молодцов В.В. Космос. Первые шаги. Первые итоги. // Гагаринский сборник (1998 г.). Материалы XXV общественно-научных чтений. — Гагарин, 1999.
10. Голованов Я.К. Королев: Факты и мифы. — М.: Наука, 1994.
11. Тихонравов М.К. О первом искусственном спутнике Земли. // 20 лет космической эры. Серия «Космонавтика. Астрономия», № 10. — М.: Знание, 1977.
12. Академик С.П. Королев. Ученый Инженер. Человек. Творческий портрет по воспоминаниям современников. / Сб. статей. — М.: Наука, 1986.
13. Военно-космические силы (военно-исторический труд). Книга 1: Космонавтика и вооруженные силы. / Фаворский В.В., Мещеряков И.В. — М., 1997.
14. Творческое наследие академика Сергея Павловича Королева. Избранные труды и документы. / Под общ. ред. акад. М.В.Келдыша. / Отв. ред. — сост. Г.С.Ветров. — М.: Наука, 1980.
15. Паппо-Корыстин В., Платонов В., Пащенко В. Днепровский ракетно-космический центр. Краткий очерк становления и развития. — Днепропетровск: ПО ЮМЗ-КБЮ, 1994.
16. Афанасьев И.Б. Р-12 — Сандаловое дерево. // Прил. к журн. «М-Хобби», вып. 9. — М.: ЭксПринт НВ, 1997.
17. Андреев Л.В., Конюхов С.Н. Янгель. Уроки и наследие. — Днепропетровск: Арт-Пресс, 2001.
18. Советский искусственный спутник Земли. // Правда, № 282 (14311), 9 окт. 1957 г., с.2.
19. Порошков В.В. 2-й спутник к юбилею Октября. К 45-й годовщине запуска второго искусственного спутника Земли. // Новости космонавтики, т.13, № 1 (240), 2003, сс.70–71.
20. Космонавтика. Энциклопедия. / Гл. ред. В.П.Глушко. — М.: «Советская энциклопедия», 1985.
21. Исследование космического пространства. / Проф. К.Сергеев. // Правда, 10 дек. 1957 г. — Цит. по: Творческое наследие академика С.П.Королева…
22. О запуске третьего советского искусственного спутника Земли. Сообщение ТАСС. // Правда, 16 мая 1958 г. — Цит. по: Путь в космос. — М.: Изд-во «Правда», 1958.
23. Александров С.Г., Федоров Р.Е. Советские спутники и космические корабли, — М.: Изд. АН СССР, 1961.
24. LePage, A.L. Three articles about Vanguard Programme // Space Views, December 1997, March 1998, February 1999.
25. History of the Redstone Missile System / Bullard J.W., Historical Division, Administrative Office, Army Missile Command, 15 Oct. 1965.
26. Baker, D. The Rocket. — Crown Publishers Inc., 1978.
27. Gatland, K. The Illustrated Encyclopedia of Space Technology. — Salamander Books, 1989 (2nd Edition).
28. Hagen, J.P. The Viking and the Vanguard // Wayne State University Press, 1964.
29. von Braun, W. and Ordway III, Fr. I. History of Rocketry & Space Travel. — Thomas Y. Crowell Company, 1966.
30. Powell, J.W. NOTS Air-Launched Satellites // Spaceflight, Vol. 36, November 1994.
31. Pesavento, P. U.S. Navy in Space // Spacefligth, Vol. 38, July 1996.
32. Vanguard. A History Source // NASA Historical Reference Collection, NASA History Office, NASA Headquarters, Washington, DC.
33. The Race To Valhalla, Launching the First Earth Satellite / Bille, M. with Lichock, E. // Quest, Vol. 8, No. 1,2000.
34. The Vanguard Satellite Launching Vehicle, An Engineering Summary — The Martin Company, April 1960.
35. Vanguard: A History / Green, C. M. and Lomask, M. — Washington, DC: Smithsonian Institution Press, 1971.
36. Project SCORE: The First Words From Space / Sweetsir, R. — Space World, January 1984.
37. Dommett, R. The Blue Streak Weapon. // Prospero: Proceedings from the British Rocket Oral History Conferences at Charterhouse, No.2, Spring 2005.
38. Minimum Satellite Vehicles / Gatland, K.W., Kunesch, A.M. and Dixon, A.E. // JBIS, Vol.56, Suppl. 1,2003.
39. Derivatives of the Black Knight Technology / Hill, N. and Wright, D. // JBIS, Vol.53, No. 9-10, 2000.
40. Sanders B. The French Diamant Rockets // Quest, Vol.7, No.l, Spring 1999.
41. The French National Space Programme 1950–1975 / Gire, B. and Schibler, J. //JBIS, Vol.40, No.2, 1987.
42. Clark, Phillip S. The Development of China's Piloted Space Prohramme: From Sounding Rockets to Shen Zhou 5 //JBIS, Vol.57, No. 11–12, 2004.
43. Clark, Phillip S. The Feng Bao-1 Launch Vehicle Programme //JBIS, Vol.55, № 7–8, 2000.
44. Юй Цинтянь. Цянь Сюесэнь — лауреат медали Роквелла-сына // Китай, № 11, 1989.
45. South Africa — New life for local space programme // CBN Archive, Sept. 1997.
46. Bermudez Jr., Joseph S. A History of Ballistic Missile Development in the DPRK. Occasional Paper No. 2. — Center for Nonproliferation Studies.
47. Рожен А. «Эксплорейшн», или Новый взгляд на то, что нужно делать в космосе. // Зеркало недели: Международный общественно-политический еженедельник, № 21 (549), 4-10 июня 2005 г.
Кроме того, использованы отдельные статьи из журналов «Новости космонавтики», Spaceflight, Air et Cosmos, Air and Space Magazine, Aviation Week and Space Technology, Flight International, Flueger Revue и материалы с сайтов.
Www.hq.nasa.gov/office/pao/History/, www.astronautix.com, www.capcomespace.net, www.skyrocket.de/space/space.html, www.planet4589.org, www.isas.jaxa.jp, www.sinidefence.com/missile, www.bernd-leitenberger.de/traegerraketen.html, www.globalsecurity.org, www.fas.org.
Примечания.
1.
«Голубая полоса»; названа так по аналогии с «Тонкой голубой линией» (Thin Blue Line) — условным обозначением английской системы ПВО периода Второй мировой войны, которая фактически спасла страну от разрушения гитлеровской авиацией во время «Битвы за Британию».
2.
Есть основания полагать, что перекись водорода, которая в период Второй мировой войны использовалась немцами в двигателях ракетных самолетов и скоростных подводных лодок и была освоена в Великобритании, представлялась многообещающим «универсальным» топливом для перспективных английских ракет, самолетов и подводных лодок.
3.
После отказа от этой ракеты в роли БРСД фирмы-разработчики продолжали работы в замедленном темпе с расчетом, что если правительство примет решение использовать ее в качестве РН, то можно будет начать испытания без задержки. В результате, к концу 1961 г. Blue Streak в варианте первой ступени РН была подготовлена к первому пуску.
4.
Как представляется, причиной такого решения стало стремление британских разработчиков предложить Black Arrow в качестве альтернативного варианта верхних ступеней общеевропейского носителя ELDO, который имел интерфейс диаметром 2,0 м под французскую вторую ступень Coralie. Если бы усилия европейской коалиции по созданию верхних ступеней закончились крахом, Black Arrow вполне могла «аккуратно пристроиться» на вершине Blue Streak!
5.
Назван по имени персонажа драмы В.Шекспира «Буря».
6.
По некоторым данным, после выхода на орбиту из РДТТ третьей ступени продолжалось истечение продуктов пиролиза теплоизоляционных материалов. В результате, ступень настигла ИСЗ и при столкновении повредила его…
7.
Двадцать восемь немецких специалистов-ракетчиков были перевезены во французскую оккупационную зону, где формируется «Исследовательское бюро Эммендинген» (Bureau d'Etudes d'Emmendingen).
8.
Начиная с этого ЖРД французские ракетчики пошли по «собственному» пути, создавая двигатели со следующими характерными чертами: максимально упрощенной конструкцией, невысоким давлением в камере сгорания («рецидив» вытеснительных систем подачи топлива), «атипичной» смесительной головкой, пленочным охлаждением огневой стенки, керамическим (или абляционным) вкладышем в критическом сечении сопла.
9.
Буквы кода означают «Летательный аппарат для испытаний»; первая цифра «1» — одноступенчатая ракета, «2» — двухступенчатая; вторая цифра «1» — твердое топливо, «2» — жидкое топливо, «3» — жидкое и твердое топливо; третья цифра «0» — неуправляемая и «1» — управляемая ракета.
10.
В плане лоббирования космических разработок Жан Делакарт (Jean Delacarte), бывший генеральный директор компании Air Liquide, вспоминает следующий эпизод: «В январе 1961 г. генерал де Голль спросил президента нашей компании Жана Делорма (Jean Delorme):
— Космос, как он может быть нам полезен?
Делорм ответил, что, например, имея на орбите спутники телекоммуникаций, американское телевидение может вторгнуться во все европейские квартиры.
— Представляете, американский президент появляется на французских экранах и заявляет, что генерал де Голль — болван! Разве Вы не пожелаете отослать ему аналогичный комплимент?
Но самое примечательное — данного шутливого «аргумента» оказалось более чем достаточно»…
11.
Пьер Суффле (Pierre Soufflet), бывший президент и генеральный директор компании SEP, в этой связи вспоминает: «В феврале 1965 г. CNES «бросился в наступление», чтобы заменить жидкостную ступень РН Diamant А на твердотопливную, т. к. три первых испытания Еmегаиdе прошли неудачно. Являясь сторонниками твердого топлива, мы, тем не менее, убедили руководство продолжать работу над жидкостным вариантом на том основании, что создание РДТТ [нужной размерности] сдвинуло бы сроки первого запуска носителя на конец 1965 г. И еще. Один из специалистов (не из CNES) заявил мне: «Твердотопливные двигатели весьма подходят для боевых баллистических ракет, но Вы знаете — эти программы существуют только благодаря поддержке генерала де Голля. Как только он уйдет со своего поста, баллистические ракеты «задвинут». Но если сделать ракеты жидкостными — они, возможно, пригодятся в качестве перспективных спутниковых носителей…».
12.
Иногда называемый «Армейский» (l'Armee); после выхода на орбиту был окрещен «Астериксом» (Asterix) в честь героя галльского эпоса.
13.
Двигатель, снаряженный 4 т пороха (poudre по-французски).
14.
С помощью этого спутника предполагалось также изучить влияние ионизирующего излучения в поясах радиации на солнечные элементы.
15.
«Австралийский коралл» — образовано от слов Corall (коралл) и Australie (Австралия).
16.
Например, по массе выводимого полезного груза эта трехступенчатая РН уступала советскому двухступенчатому носителю «Космос-3М» (11К65М).
17.
Полигон в Вумера не годился для запуска КА на геостационар, поэтому ELDO осуществила «большой переезд».
18.
F13/F14 должны были вывести на стационарную орбиту франко-германские экспериментальные телекоммуникационные спутники Symphony (запущены американскими РН Delta в декабре 1974 г. и августе 1975 г. F15 должен был вывести спутник COS-B.
19.
Еще в 1965 г. организация разместила в Англии, Франции и ФРГ заказы на предварительную разработку кислородно-водородных ЖРД.
20.
Французский акроним «запасной вариант носителя третьего поколения»; (r) впоследствии «отпала».
21.
Французы справедливо полагали, что Главное счетное управление США не допустит ситуации, когда «пользователи, особенно иностранные, будут платить всего 40 млн $ за «целый» полет корабля Space Shuttle, в то время как он обходится американскому налогоплательщику в 350–400 млн $». С точки зрения успеха на рынке пусковых услуг было чрезвычайно дальновидно снизить цену на перспективную европейскую РН ниже той, которую NASA установило на свои носители в преддверии переноса коммерческих запусков на шаттлы.
22.
С РДТТ Castor IVB в качестве первой ступени ракета имела стартовую массу 15035 кг, диаметр 1,0 м, полную длину 18,20 м и стартовую тягу 33,6 тс.
23.
Как представляется, по политическим мотивам.
24.
Руководителем которого стал бывший директор ISAS Нобору Такаги (Noboru Takagi).
25.
Следует отметить, что Научный Совет Японии одобрил также проект ракеты, стартующей с воздушного шара (деньги на проект выделила газета Yomiuri). Два таких шара с ракетами были запущены в 1961 г. из Роккачо (Rokkasho), Аомори (Aomori), но проект заглох.
Идея старта с воздушного шара была возрождена при испытаниях летной модели японского шаттла в конце 1990-х гг.
26.
Chang Zheng-1, «Великий Поход-1».
27.
«Классическая» МБР имеет дальность 6-11 тыс км.
28.
Великий Конфуций (VI–V вв. до н. э.) учил: «Три пути ведут к знанию: путь размышления — самый благородный, путь подражания — самый легкий, путь опыта — самый горький». Кто «бросит камень» в выбравших «легкий путь» китайских разработчиков, за спиной которых не было ни мощной научной базы, ни серьезного инженерного опыта, ни даже надежного технического образования?
29.
На первой ступени устанавливался четырехкамерный ЖРД YF-2A (аббревиатура от Yei-ti Fa-dong-ji, «Ей-ти Фа-дун-цзи» — жидкостный двигатель), на второй — YF-3 (тот же YF-2, но в однокамерном исполнении с высотным соплом). Газогенераторы ТНА двигателей работали на основных компонентах топлива.
С достаточной степенью достоверности можно считать, что в основу этих китайских ЖРД положены советские принципы разработки. Например, в их конструкции широко применяются оболочечные паяно-сварные камеры с плоскими смесительными головками, имеющими одно— или двухкомпонентные форсунки, моноблочные одновальные безредукторные ТНА, а также агрегаты автоматики с пиротехническими или пневматическими приводами.
30.
Через 25 лет он стал Главным конструктором пилотируемого космического корабля «Шэньчжоу».
31.
Фактически — плоский круглый «китайский зонтик» большого (6–7 м) диаметра, образованный металлизированной тканью.
32.
Эта преимущественно мусульманская провинция Индии объявлена Пакистаном «спорной территорией».
33.
Индия испытала первый ядерный боеприпас в 1974 г.
34.
Данный факт послужил основанием для западных СМИ через 40 лет заявить, что ВСЯ индийская ракетно-космическая техника начального периода скопирована с американской. На это доктор Калам с иронией ответил: «Конечно, в этом есть доля правды, — однако единственная «живая» ракета, которую мне показали американцы, потерпела аварию при запуске и грохнулась рядом с джипом главного администратора NASA!».
35.
После СССР, США, Франции, Японии, КНР, Великобритании и Индии.
36.
Данные наработки пригодились Dassault при проектировании боевых ракет S-3, М-20, М-4 и космической РН Ariane.
37.
При запуске в западном направлении носитель проходит над Средиземным морем, побережьем Египта и Ливии, югом Сицилии и — в конце — прямо над Гибралтарским проливом.
38.
По неподтвержденным данным, на базе технологии носителей LK-1 и LK-2 Израиль в состоянии создать боевую ракету с дальностью полета 4,5–7,0 тыс км.
39.
По информации Диртера Герхардта (Dierter Gerhardt), старшего морского офицера южноафриканского флота и, по совместительству, агента Советского Союза, в рамках соглашения «Chalet» Израиль обязался поставить в ЮАР восемь ракет Jericho II со «специальными» боеголовками.
40.
Следует отметить уже достигнутые Бразилией крупные успехи в авиастроении, в частности, по созданию региональных пассажирских и легких самолетов.
41.
Судя по тому, что среди основных разработчиков РН в официальных документах встречаются инженеры с японскими фамилиями, такие как Тосиаки Йосино (Toshiaki Yoshino) и Марио Тосиаки Туру (Mario Toshiaki Turu), можно предположить, что при ее создании учитывался опыт Института космических и астронавтических наук ISAS (Япония).
42.
Технологический ИСЗ Satec массой 65 кг разработки Национального института космических исследований INPE для мониторинга состояния систем носителя в полете и экспериментальный Unosat-1 (8,83 кг), созданный студентами и преподавателями Северного университета Параны по образовательной программе.
43.
По размерности соответствует двигателю первой ступени РН Vanguard.
44.
Разрабатывался с октября 2002 г. как дублер аппарата STSAT-1 (KAISAT-4, запущен 27 сентября 2003 г. российской РН «Космос-3М»).
45.
Возможно, на базе кислородно-керосинового модуля KSR-III.
46.
Система противовоздушной и противокосмической обороны США и Канады.
47.
Разработана на основе технологии советской мобильной БР Р-17 (Scud-B), как полагают, при участии специалистов Северной Кореи и Пакистана.
48.
Ранее сообщалось, что первый иранский спутник имел наименование Sepehr («Небосвод»).
49.
Достаточно упомянуть сначала премьер-министра, а затем президента Украины Л.Д.Кучму, который в советские времена руководил днепропетровским «Южным машиностроительным заводом».
50.
В 2004 г. было запущено семь украинских РН: три «Зенита-3SL» с плавучего комплекса Sea Launch, no одному «Зениту-2», «Циклону-2» и «Днепру» с космодрома Байконур и один «Циклон-3» с космодрома Плесецк. Если учесть, что во всем мире в 2004 г. было проведено 55 пусков, то доля Украины составила впечатляющие 12,7 %.
51.
За полвека с Байконура запущено более 1100 КА различного назначения и несколько сот МБР, испытано 38 основных типов ракет, более 80 типов космических аппаратов и их модификаций. В различные годы число основных технических сооружений составляло: 52 стартовых сооружения, 34 технических комплекса, 3 вычислительных центра, 16 стационарных измерительных пунктов, 2 подвижных автомобильных, 1 железнодорожный, 4 самолетных измерительных пункта, 4 базы падения, 1 кислородно-азотный завод, 2 механосборочных завода, 2 аэродрома и 5 посадочных площадок, ТЭЦ мощностью 80 МВт, 2 энергопоезда, метеостанция, ионосферная станция. Стартовый район космодрома раскинулся на 85 км с севера на юг и на 125 км с запада на восток. Помимо стартового района к космодрому относятся измерительные пункты, расположенные на расстоянии до 500 км по трассе полета ракет на территории Республики Казахстан, а также 22 поля падения отработавших ступеней ракет общей площадью 4,8 млн га выведенных из обращения земель.
52.
По другим сведениям, финансирование «Байтерека» осуществляется Россией и Казахстаном в пропорции 1:1.
53.
Orbital Transport und Raketen Aktiengesellschaft — акционерное общество по созданию орбитальных ракет-носителей (нем.).
54.
А в годы Второй мировой войны — начальником испытательной станции германского ракетного центра «Пенемюнде».
55.
Предполагается, что предтечей подобного модуля являлась небольшая германская жидкостная зенитная ракета «Тайфун» времен Второй мировой войны.
56.
Сообщалось, что для ракет OTRAG была закуплена инерциальная система управления французской фирмы Thomson CSF.
57.
Видимое невооруженным глазом с поверхности Земли орбитальное координированное построение ИСЗ в виде «многоточечного» геометрического изображения (символа, «лэйбла», текста и т. п.).
58.
Ноосфера (греч. «разум» и «сфера») — по В.И.Вернадскому, высшая стадия биосферы, включающая человечество со всеми его возможностями и специально организованный обмен веществом, энергией и информацией между окружающей средой и разумным сообществом.
Содержание.
- Об авторах.
- Предисловие.
- Введение.
- 1.
- Великий основоположник мировой практической космонавтики Константин Эдуардович Циолковский.
- 2.
- «Россия, спутник!».
- 3.
- Постановление Совета Министров СССР № 1017-419сс от 13 мая 1946 г.
- 4.
- 5.
- Первая отечественная управляемая баллистическая ракета дальнего действия Р-1 была точной копией немецкой А-4 («Фау-2») (Фото из архива РКК «Энергия»).
- 6.
- Катапультная тележка с «собачьей» гермокабиной, которая применялась при высотных пусках ракет (Фото И.Афанасьева).
- 7.
- «Геофизическая» модификация Р-2 для исследования верхних слоев атмосферы (Коллаж А.Шлядинского).
- 8.
- М.К.Тихонравов и С.П.Королёв (Фото из архива Б.Рябчикова).
- «Семерка» — самая знаменитая ракета в мире.
- 9.
- 10.
- Первая атомная бомба СССР; водородные изделия были значительно габаритнее (Фото И.Маринина).
- 11.
- Многокамерные двигатели РД-107 и РД-108 ракеты Р-7 (Фото И.Маринина).
- 12.
- Конструктивно-компоновочная схема первой советской межконтинентальной баллистической ракеты Р-7: 1 — носовой конус с боевой частью; 2, 6 — приборные отсеки; 3 — антенны телеметрической системы; 4 — башмаки силового пояса; 5, 7 — баки окислителя; 8, 9 — баки горючего; 10 — многокамерные маршевые двигатели центрального и боковых блоков; 11 — аэродинамические рули; 12 — рулевые камеры сгорания.
- 13.
- Сборка «пакета» МБР Р-7 (Фото из архива РКК «Энергия»).
- 14.
- Характерная хвостовая часть «семерки» с многокамерными двигательными установками (Фото И.Афанасьева).
- 15.
- Стартовая позиция «семерки»: 1 — стартовая система; 2 — фермы обслуживания; 3 — обмывочно-нейтрализационная машина; 4 — заправщик перекиси водорода; 5 — заправщик горючего; 6 — опорная ферма (Рисунок из архива КБОМ).
- 16.
- Стартовая система «семерки»: 1 — поворотный круг; 2 — основание; 3 — стрела несущая; 4 — опорная ферма; 5 — силовой пояс; 6 — привод поворотного круга; 7 — нижняя кабельная мачта; 8 — направляющее устройство; 9 — верхняя кабельная мачта (Рисунок из архива КБОМ).
- 17.
- О причинах ненормального полета ракеты Р-7 при первом экспериментальном пуске 15 мая и о мероприятиях, проведенных по подготовке к пуску второй ракеты.
- 18.
- Первые «семерки»: 1 — 8К71 для летных испытаний; 2 — 8К71ПС с Первым спутником; 3 — 8К71ПС со Вторым спутником; 4 — 8А91 с Третьим спутником; 5 — 8К71 с первым штатным вариантом ГЧ; 6 — 8К71 с облегченной ГЧ.
- 19.
- Рисунок А.Соколова.
- 20.
- Рисунок А.Соколова.
- 21.
- Рисунок А.Соколова.
- 22.
- Подстраховка.
- 23.
- Р5/Р11.
- 24.
- Первая ступень двухступенчатого носителя 63С1 была сделана на базе боевой ракеты Р-12 (Фото И.Афанасьева).
- Имя собственное: Первый, Второй, Третий.
- 25.
- 26.
- Проектная схема отделения спутника «объект Д» от ракеты-носителя: 1 — носовые створки обтекателя; 2 — спутник; 3 — хвостовые щитки обтекателя; 4 — последняя ступень РН.
- 27.
- Одна из первых конструктивных схем «простейшего спутника».
- 28.
- Рисунок из архива РКК «Энергия».
- 29.
- «Начинка» Первого в мире (он же «простейший») искусственного спутника Земли (Фото И.Маринина).
- 30.
- Головной обтекатель ПС (Фото И.Маринина).
- Сообщение ТАСС.
- 31.
- Запуск первого в мире искусственного спутника Земли.
- 32.
- Госкомиссия по испытаниям ракеты Р-7 и первого спутника, а также руководители испытаний. Площадка 10 полигона Тюратам, осень 1957 г. Слева направо сидят: Г.Р.Ударов, А.И.Семёнов, А.Г.Мрыкин, М.В. Келдыш, С.П.Королёв, В.М.Рябиков, М.И. Неделин, Г.Н. Пашков, М.С. Рязанский, К.Н.Руднев, В.П.Глушко, В.П.Бармин, В.И.Кузнецов; стоят: П.Е.Трубачёв, Г.А. Тюлин, Н.Н.Смирницкий, Н.А.Пилюгин, А.А.Васильев, В.И.Ильюшенко, А.И. Носов, А.Ф. Богомолов, К.Д. Бушуев, В.И.Курбатов, К.В.Герчик.
- 33.
- После запуска Первого спутника Н.С.Хрущев не раз прибегал к помощи «космических козырей» в политической игре с Западом (Фото из Библиотеки Конгресса США).
- 34.
- Подготовка к запуску Второго ИСЗ.
- 35.
- Схема размещения аппаратуры на Втором спутнике: 1 — сбрасываемый защитный конус; 2 — прибор для регистрации УФ и рентгеновского излучения Солнца; 3 — сферический контейнер с радиопередатчиками; 4 — силовая рама; 5 — гермокабина с подопытным животным.
- 36.
- Радиотелеметрические станции «Трал».
- 37.
- Пульт и фотоблоки станции «Трал».
- 38.
- Макет герметичной кабины животного, которая устанавливалась на Втором ИСЗ (Фото И.Маринина).
- 39.
- Модульная конструкция Второго спутника: приборный блок (СП-65) — блок передатчиков (аналог Первого ИСЗ) — кабина Лайки — блок телеметрической аппаратуры (единый для РН и ИСЗ) — последняя (неотделяемая) ступень ракеты-носителя. В корпусе РН дополнительно размещались два прибора для регистрации космических лучей, программно-временное устройство и источники электропитания (Фото И.Афанасьева).
- 40.
- Прибор СП-65 Второго советского ИСЗ: более сложный, чем счетчик Гейгера-Мюллера на первом американском КА Explorer 1, он уступил конкуренту честь открытия радиационного пояса Земли (Фото В.Куприянова).
- 41.
- 42.
- Приборный блок Третьего ИСЗ: объем и масса впечатляют… (Фото И.Маринина).
- 43.
- Научная аппаратура Третьего спутника: 1 — магнитометр; 2 — фотоумножители для регистрации корпускулярного излучения Солнца; 3 — солнечные батареи; 4 — прибор для регистрации фотонов в космических лучах; 5 — магнитный и ионизационный манометры; 6 — ионные ловушки; 7 — электростатические флюксметры; 8 — масс-спектрометр; 9 — прибор для регистрации тяжелых ядер в космических лучах; 10 — прибор для измерения интенсивности первичного космического излучения; 11 — датчики для регистрации микрометеоров.
- 44.
- МБР Р-7, модернизированная для запуска спутника ПС.
- «Гуд бай, Америка…».
- 45.
- 46.
- Двенадцать главных немецких ракетчиков, сменивших Центр Пенемюнде III Рейха на Редстоунский арсенал в США. Слева направо: Эрнст Штулингер (Ernst Stuhlinger), директор управления научно-исследовательских работ; Хельмут Хользер (Helmut Hoelzer), директор вычислительного центра; Карл Хэймбург (Karl L. Heimburg), директор испытательной лаборатории; Эрнст Гесслер (Ernst Geissler), директор аэробаллистической лаборатории; Эрих Нойберт (Erich W. Neubert), директор лаборатории надежности и системного анализа; Вальтер Хоссермарн (Walter Haeussermarn), директор лаборатории наведения и управления; Вернер фон Браун (Wernher von Braun), главный конструктор, директор отделения разработок; Вилльям Мразек (William A. Mrazek), директор лаборатории конструкции и механики; Ханс Хойтер (Hans Hueter), директор лаборатории наземных систем; Эберхарт Реес (Eberhard Rees), заместитель директора отделения разработок; Курт Дебус (Kurt Debus), директор лаборатории пуска ракет; Ханс Маус (Hans H. Maus), директор лаборатории производства и сборки (Фото NASA).
- 47.
- Четырехступенчатый кислородно-спиртовой и двухступенчатый кислородно-водородный «корабли», предложенные RAND и BuAer в 1946 г.
- 48.
- Американский ракетный рекорд 1949 г.: двухступенчатый Bumper (комбинация А-4 и WAC–Corporal) достиг высоты 402 км (Фото NASA).
- 49.
- В. фон Браун вместе с У.Диснеем («сначала было… кино») (Фото NASA).
- 50.
- Гипотетическая РН — как ее представляли в начале 1950-х… (Рисунок BIS).
- 51.
- …и гипотетический надувной ИСЗ в момент выхода на орбиту (обратите внимание на эволюцию общего вида РН буквально за несколько лет) (Рисунок BIS).
- 52.
- Первая в мире инженерная концепция «минимального спутника» MOUSE: варианты «сферический» и «цилиндрический».
- 53.
- «Новый инструмент глобальной политики» — президент Д.Эйзенхауэр (слева) инспектирует стартовые ракетные комплексы на авиабазе Патрик (мыс Канаверал) (Фото NASA).
- Операция «Фарсайд»: выстрел со стратостата.
- 54.
- 55.
- В проекте «Фарсайд» старт космической ракеты осуществлялся сквозь оболочку высотного аэростата (Фото из журнала Missiles and Rocket).
- 56.
- 57.
- Подготовка ракеты «Фарсайд-1» к установке в аэростат (Фото AFOSR).
- Промахи и удачи «Авангарда».
- 58.
- 59.
- Двигатель Х-405 первой ступени РН Vanguard в музейной экспозиции. На переднем плане слева — хвостовая часть одной из ракет Годдарда, справа — двигатель экспериментального самолета Х-1 (Фото Ч.Вика).
- 60.
- Что такое «Авангард» поясняет руководитель программы Джон П. Хаген: «Леди и джентльмены, все о'кей!» (Фото NRL).
- 61.
- Стеклянная модель спутника Vanguard, представленная на первой презентации одноименной программы.
- 62.
- Ракета Viking-13, запущенная по программе Vanguard (Фото Glenn T.Martin (Locheed Martin)).
- 63.
- Старт РН Vanguard 6 декабря 1957 г. Америка в погоне за русскими. Мир затаил дыхание… (Фото NASA).
- 64.
- … и взрыв РН спустя несколько мгновений («Вот это "флопник"!») (Фото US Navy).
- 65.
- Sic transit gloria mundi… Обломки TV-3 на поврежденном стартовом столе (Фото из архива Центра Кеннеди).
- 66.
- Знаменитый «грейпфрут» — макет ИСЗ Vanguard 1 в натуральную величину держит один из его разработчиков Р.Итон (Roger Eaton) (Фото NRL).
- 67.
- «Полный» спутник Vanguard позирует перед запуском (Фото NASA).
- 68.
- Сборка «первого метеоспутника» Vanguard 2. Именно с таких — маленьких и примитивных по современным меркам аппаратов начиналась великая дорога в космос (Фото NRL).
- 69.
- Стандартный «20-дюймовый» Vanguard: 1 — антенна (в сложенном положении); 2 — датчик давления; 3,10 — датчик метеорной эрозии; 4, 9 — датчики температуры; 5 — «киндер-сюрприз» — блок электроники; 6 — устройство отделения спутника; 7 — третья ступень РН; 8 — датчик лайман-альфа излучения; 11 — ионизационная камера; 12 — «этажерка» с печатными платами и аккумуляторами.
- 70.
- Спутник Vanguard 3 (Фото NASA).
- 71.
- 72.
- 73.
- Схема ракеты-носителя Vanguard: 1 — приемник воздушного давления; 2 — ГО; 3 — экспериментальный спутник Vanguard 1; 4 — РДТТ фирмы GCR; 5 — отсек системы управления; 6 — баки второй ступени; 7 — ЖРД второй ступени; 8 — баки первой ступени; 9 — баллон с перекисью водорода; 10 — ЖРД первой ступени; 11 — сопла управления по крену.
- Первый реальный спутник США.
- 74.
- 75.
- Подготовка ракеты Redstone в полевых условиях (Фото из архива Редстоунского арсенала).
- 76.
- «Выставочный» снимок в цехе сборки БР Redstone. На переднем плане РН Jupiter C со связками ракет Baby Sergeant и спутником Explorer; на отдельных стендах — ЖРД первой ступени и макеты боеголовок (Фото NASA).
- 77.
- Сборка верхних ступеней Jupiter C на плакате (Редстоунский арсенал)…
- 78.
- …и «живьем» в башне обслуживания (Фото NASA).
- 79.
- Фото из архива Авиационного и ракетного командования Армии США (16 октября 1957 г.): В. фон Браун рядом с «носовым конусом» ракеты Jupiter C.
- 80.
- Монтаж четвертой ступени со спутником Explorer 1 (Фото NASA).
- 81.
- 82.
- Схема ракеты-носителя Jupiter С (Juno I): 1 — спутник Explorer 1; 2 — РДТТ четвертой ступени; 3 — связки РДТТ второй и третьей ступеней; 4 — механизм вращения верхних ступеней; 5 — отсек системы управления; 6 — баллон со сжатым воздухом системы управления ориентацией; 7 — бак горючего; 8 — бак окислителя; 9 — трубопровод подачи горючего в двигатель; 10 — ЖРДА-7; 11 — аэродинамические стабилизаторы; 12 — аэродинамические рули; 13 — графитовые газовые рули.
- 83.
- У.Пикеринг, Дж. Ван Ален и В. фон Браун с макетом «Эксплорера-1». Америка в космосе! (Фото из архива Редстоунского арсенала).
- 84.
- Старт РН Jupiter C (Juno I) со спутником Explorer 1 (Фото NASA).
- 85.
- Основные модификации ракеты Redstone: вариант для летных испытаний, тактическая ракета Redstone Block II, РН боеголовок Jupiter С, спутниковая РН Juno I, PH Mercuty-Redstone, РН SPARTA.
- 86.
- Совершенно секретный NOTSNIK.
- 87.
- 88.
- Примечательное фото: под крылом «Скайрэя» изделие «от NOTS» (Фото NOTS).
- 89.
- Схема ракеты-носителя NOTSNIK: 1 — спутник; 2 — РДТТ шестой ступени; 3 — РДТТ пятой ступени; 4 — РДТТ четвертой ступени; 5 — обтекатель; 6 — РДТТ второй/третьей ступеней; 7 — аэродинамический стабилизатор.
- 90.
- 91.
- Модель самолета F-4D-1 Skyray с ракетой-носителем NOTSNIK под крылом (Фото с сайта mek.cosmo.cz).
- 92.
- Полезный груз перехватчика спутников NOTSNIC II. Снимок датируется 5 мая 1962 г. (Фото US Navy).
- 93.
- Помимо воздушных стартов, прототипы противоспутниковых ракет (в данном случае — Caleb) запускались с наземных установок (Фото NOTS).
- 94.
- 95.
- Специально оборудованный истребитель F-4D-1 Skyray осуществлял с 1958 г. пуски по проекту NOTSNIK. Запечатлена подготовка к полету с ракетой Caleb (1960 г.) (Фото W.W.West).
- 96.
- Подготовка ракеты Caleb к пуску с самолета F-4H Phantom II (Фото US Navy).
- «Говорящий» SCORE.
- 97.
- 98.
- 99.
- «Отцы-основатели» проекта Atlas: Карел (Чарли) Боссарт (Karel J. (Charlie) Bossart) — автор идеи несущих баков, менеджер программ МХ-774 и МХ-1593, технический директор проекта; Джим Дэмпси (J.R. (Jim) Dempsey) — с 1954 г. руководитель программы Atlas, в последующем президент отделения Convair Astronautics фирмы General Dynamics (Фото US Air Force).
- 100.
- Ракета-носитель Atlas-SCORE перед стартом (Фото US Air Force).
- 101.
- Компоновка МБР Atlas B: 1 — отделяемый «носовой конус»; 2 — переднее днище бака; 3 — гаргрот для кабелей; 4 — боковой приборный отсек; 5 — заднее днище бака; 6 — стартовые двигатели; 7 — маршевый двигатель; 8 — рулевые двигатели; 9 — бак окислителя; 10 — промежуточное днище; 11 — бак горючего.
- Принятые сокращения.
- Примечания.
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- Старый свет: поиск «третьего пути».
- 102.
- «Вперед, Британия!
- 103.
- 104.
- Подготовка к пуску одноступенчатого варианта ракеты Black Knight (Фото из архива Николаса Хилла (www.spaceuk.org)).
- 105.
- Схема двухступенчатой ракеты Black Knight: 1 — бак со сжатым газом системы отделения и закрутки второй ступени; 2 — РДТТ Cuckoo второй ступени; 3 — разрывные болты; 4 — макет головной части; 5 — переходник-обтекатель; 6 — отсек автопилота; 7 — бак горючего (керосин); 8 — межбаковый отсек; 9 — гаргрот, закрывающий кабели; 10 — детонатор системы аварийного прекращения полета; 11 — бак окислителя (перекись водорода); 12 — отсек маршевой двигательной установки; 13 — аэродинамические стабилизаторы; 14 — блок передатчика; 15 — лампы-трассеры.
- 106.
- На стартовом столе — двухступенчатый вариант ракеты Black Knight (Фото из архива Николаса Хилла (www.spaceuk.org)).
- 107.
- Blue Streak (Рисунок Flight International).
- 108.
- Компоновка двигательного отсека ракеты Blue Streak.
- 109.
- Сравнение одноступенчатой высотной ракеты Black Knight с предлагаемым спутниковым носителем Black Prince.
- 110.
- Схема ракеты-носителя Black Arrow: 1 — спутник Prospero; 2 — головной обтекатель; 3 — РДТТ 3-й ступени; 4, 9 — баки горючего (керосин); 5, 10 — межбаковые приборные отсеки; 6,11— баки окислителя (перекись водорода); 7 — ЖРД Gamma-2 второй ступени; 8 — межступенчатый переходник; 12 — ЖРД Gamma-8 первой ступени.
- 111.
- Ракета Black Arrow на стенде в Хай-Дауне (Фото из архива Николаса Хилла (www.spaceuk.org)).
- 112.
- Экспериментальный КА ORBA (телеметрический контейнер ВЗ плюс спутник Х2) под головным обтекателем Black Arrow R2 (Фото из архива Николаса Хилла (www.spaceuk.org).
- 113.
- Проверка ступеней РН Black Arrow перед отправкой в Австралию.
- 114.
- Подготовка к старту ракеты-носителя Black Arrow R2 (Фото с сайта www.capcomespace.net).
- 115.
- Запуск Black Arrow R3 со спутником Prospero (Фото с сайта www.capcomespace.net).
- 116.
- Спутник-дублер ХЗ в «Музее Науки» (Лондон). Его предполагалось задействовать, если в оригинале будут обнаружены дефекты (Фото И.Афанасьева).
- 117.
- Исторический раритет — первая ступень ракеты Black Arrow, которая вывела на орбиту первый английский ИСЗ Prospero.
- 118.
- «Драгоценные камни» Французской Республики.
- 119.
- 120.
- Подготовка к запуску высотной ракеты Veronique (Фото с сайта www.capcomespace.net).
- 121.
- *Начальную устойчивость обеспечивали четыре троса, намотанные на барабан ПУ и прикрепленные к кронштейнам у основания стабилизаторов ракеты. Кронштейны сбрасывались на высоте 55 м, когда ракета, набрав скорость, становилась аэродинамически устойчивой.
- 122.
- Старт ракеты «Изумруд» (Фото CNES).
- 123.
- Ракета «Топаз» перед пуском (Фото CNES).
- 124.
- Технологическая капсула А-1 перед установкой в носовую часть ракеты Diamant А (Фото CNES).
- 125.
- Стартовый комплекс РН Diamant на космодроме Хаммагир: 1 — центр управления; 2 — вспомогательная кабель-заправочная мачта; 3 — стартовый стол; 4 — РН Diamant A; 5 — подвижная башня обслуживания; 6 — электроподстанция; 7 — линии связи; 8 — пожарный резервуар; 9 — трейлер с азотной кислотой; 10 — хранилище спецодежды для персонала (Фото с сайта www.capcomespace.net).
- 126.
- Старт первой космической РН Diamant A 26 ноября 1965 г. Франция — третья в космосе! (Фото CNES).
- 127.
- Пуск РН Diamant B (Фото CNES).
- 128.
- В полете Diamant B-P4 (Фото CNES).
- 129.
- Компоновочная схема РН Diamant A: 1 — сбрасываемый головной обтекатель; 2 — спутник Asterix (технологическая капсула А-1); 3 — твердотопливный двигатель третьей ступени Rubis с неподвижным соплом; 4 — отсек системы управления и закрутки третьей ступени; 5 — твердотопливный двигатель второй ступени Topaze; 6 — поворотные сопла РДТТ второй ступени; 7 — коническая защитная юбка второй ступени; 8 — твердотопливный газогенератор системы вытеснения топлива первой ступени; 9 — бак окислителя (азотная кислота) первой ступени; 10 — бак горючего (скипидар) первой ступени; 11 — ЖРД Vexin первой ступени, установленный в кардановом подвесе; 12 — аэродинамические стабилизаторы (4 штуки); 13 — РДТТ управления первой ступени по крену (2 шт.).
- 130.
- Спутник FR-1, запущенный «Скаутом» (Фото CNES).
- 131.
- Фото И.Афанасьева.
- 132.
- Общеевропейский носитель — от «Европы» к «Ариану».
- 133.
- 134.
- Схема ракеты-носителя Еигора 1: 1 — сбрасываемый ГО; 2 — экспериментальный спутник; 3 — плоскость отделения спутника; 4 — бак горючего третьей ступени; 5 — бак окислителя третьей ступени; 6 — баллон со сжатым гелием; 7 — ЖРД управления; 8, 13 — маршевый двигатель; 9 — бак окислителя второй ступени; 10 — бак горючего второй ступени; 11,18 — трубопровод подачи окислителя в ЖРД; 12 — межступенчатый переходник; 14 — герметизированный отсек оборудования; 15 — бак окислителя первой ступени; 16 — линия наддува окислителя; 17 — бак горючего первой ступени; 19 — теплообменник; 20 — ДУ первой ступени.
- 135.
- Перевозка Blue Streak для стендовых испытаний (Фото из архива Николаса Хилла (www.spaceuk.org)).
- 136.
- Cora — самая тяжелая баллистическая ракета, испытанная в полете на территории послевоенной Западной Европы (Фото с сайта www.capcomespace.net).
- 137.
- Сборка ступеней РН Europa (Фото с сайта www.capcomespace.net).
- 138.
- Начало программы Europa (испытание ракеты Blue Streak без верхних ступеней в Спейдедаме)… (Фото DERA).
- 139.
- … и окончание (Europa 2, полет F1, Куру) (Фото с сайта www.capcomespace.net).
- 140.
- Europa 1/2 оказалась «слишком слабой», a Europa 3 — «слишком смелой».
- 141.
- *Высотой 550 км.
- **На геостационарную орбиту — 230 кг (перигейный РДТТ стартовой массой 897 кг, тягой 41,2 кН, удельным импульсом 276,0 сек и временем работы — 45 сек).
- ***Размах по аэродинамическим стабилизаторам.
- 142.
- 143.
- Наши дни: руины испытательного стенда и останки первой ступени ракеты-носителя Europa 1 в Спейдедаме.
- 144.
- Europa 3B (слева) и французские предложения в рамках «резервной программы».
- 145.
- «Симфония», на примере которой США решили указать Западной Европе «ее место» в коммерческом космосе (Фото ESA).
- 146.
- Компоновка ступеней Ariane 1 (Фото с сайта www.capcomespace.net).
- 147.
- 148.
- Французские ЖРД (1945–1967 гг.).
- 149.
- Связка четырех Viking V на первой ступени Ariane 1 (Фото Arianespace).
- 150.
- Схема РН Ariane 1: 1 — головной обтекатель; 2 — ПГ для демонстрационного полета; 3 — кислородно-водородная третья ступень; 4 — двигатель НМ-7А третьей ступени; 5 — вторая ступень на долгохранимом топливе; 6 — двигатель Viking IV второй ступени; 7 — первая ступень на долгохранимом топливе; 8 — торовый бак с водой; 9 — аэродинамические стабилизаторы; 10 — двигательная установка первой ступени (Drakkar) — связка из четырех двигателей Viking V.
- 151.
- РН Ariane могла выводить два спутника сразу: установка «верхнего» КА на переходник SYLDA (Фото с сайта www.capcomespace.net).
- 152.
- 24 декабря 1979 г. — первый старт Ariane 1 (Фото Arianespace).
- 153.
- Последний старт «классической» Ariane 44L. 15 февраля 2003 г. (Фото Arianespace).
- 154.
- Спутник San Marco 1 на последней ступени РН Scout (справа) и общий вид итальянского морского космодрома с подготовленным к старту носителем (Фото John Ives и John Raymont).
- 155.
- Легкая четырехступенчатая РН Scout (США), на базе которой разрабатывался итальянский носитель (Фото NASA).
- 156.
- Пуск «полумакетной» ракеты Zefiro (Фото ASI).
- 157.
- Запуск РН Vega в представлении художника (Рисунок Arianespace).
- 158.
- Рисунок INTA.
- 159.
- «Ракеты нет, а спутник выжил»: Nanosat 01 (Фото INTA).
- Первые ракеты и спутники «Страны восходящего солнца».
- 160.
- 161.
- Знаменитые «карандаши» Х.Итокавы умиляют ракетомоделистов и одновременно демонстрируют: когда власть на стороне инженеров — технический прогресс фантастически успешен (Фото JAXA).
- 162.
- Итокава за пультом управления пуском первых послевоенных ракет (именно с такого примитивного оборудования начиналось японское «электронное чудо») (Фото JAXA).
- 163.
- Ракета Lambda-3H на пусковой установке. В рамках Международного года спокойного Солнца (1964–1965 гг.) эти потомки «карандашей» достигали высоты ~1500 км (Фото JAXA).
- 164.
- Четырехступенчатая твердотопливная ракета-носитель Lambda-4S: 1 — сбрасываемый головной обтекатель; 2 — ПГ; 3 — сферический РДТТ четвертой ступени; 4 — система управления; 5 — РДТТ третьей ступени; 6 — РДТТ второй ступени; 7 — РДТТ первой ступени; 8 — стартовые твердотопливные ускорители; 9 — аэродинамические стабилизаторы.
- 165.
- Отсюда «Страна восходящего солнца» шагнула в космос (строительство стартовой площадки РН Lambda-4) (Фото JAXA).
- 166.
- Запуск Lambda-4S-5 11 февраля 1970 г. Через 8 мин 29 сек Япония станет четвертой державой «Большого космического клуба» (Фото JAXA).
- 167.
- Установка ГО на спутник Ohsumi. Хорошо виден сферический РДТТ четвертой ступени (Фото JAXA).
- 168.
- Подготовка к первому запуску «рабочего» носителя Mu-4S (Фото JAXA).
- 169.
- Китайская Народная Республика: «Алеет восток».
- 170.
- 171.
- История КНР в лицах: «великий кормчий» Мао Цзэдун (справа) и «главный ракетчик» Цянь Сюэсэнь. Они довольны — китайскому космосу быть!
- 172.
- Ракета средней дальности DF-3 — прототип первой ступени спутниковой РН.
- 173.
- МБР «ограниченной дальности» DF-4 — база спутникового носителя.
- 174.
- 175.
- 176.
- Схема ракеты-носителя CZ-1: 1 — спутник DFH-1; 2 — головной обтекатель; 3 — РДТТ 3-й ступени; 4 — приборный отсек; 5 — баки 2-й ступени; 6 — ЖРД 2-й ступени; 7 — ферменный межступенчатый переходник; 8 — баки 1-й ступени; 9 — ЖРД 1-й ступени; 10 — аэродинамические стабилизаторы (4 шт.); 11 — газовые рули (4 шт.).
- 177.
- Первый китайский носитель CZ-1 готовится к полету в космос. Канонический кинокадр (Фото Xinhua).
- 178.
- Историческое фото: установка второго китайского спутника на третью ступень РН. Ватники и ушанки на инженерах и рабочих — яркая иллюстрация того, что «не боги горшки обжигают» (Фото из книги China in Space).
- 179.
- 180.
- Такой увидел панораму стартовой позиции CZ-1 вице-президент Шведской космической корпорации Свен Гран.
- Индия: через тернии — к звездам.
- 181.
- 182.
- Фото с сайта президента Индии.
- 183.
- Зондирующие ракеты RH-75, RH-100, RH-125, RH-300 (на фото) производились в Индии серийно (Фото ISRO).
- 184.
- Первые индийские спутники Ariabhata и Bhaskara (на фото) были запущены советскими ракетами с космодрома Капустин Яр (Фото ISRO).
- 185.
- 186.
- Спутник Rohini на последней ступени РН SLV-3 (Фото ISRO).
- 187.
- Вывоз ракеты SLV-3 на стартовую позицию (Фото ISRO).
- 188.
- Схема первой индийской ракеты-носителя SLV-3: 1 — головной обтекатель; 2 — спутник Rohini; 3 — РДТТ четвертой ступени; 4 — отсек системы управления; 5 — РДТТ третьей ступени; 6, 8 — блоки системы управления вектором тяги; 7 — РДТТ второй ступени; 9 — трехсегментный РДТТ первой ступени; 10 — аэродинамические стабилизаторы; 11 — газовые рули.
- 189.
- Первый пуск SLV-3 (Фото с сайта президента Индии).
- 190.
- 191.
- Абдул Калам (третий справа) в окружении коллег на праздновании 25-летия запуска Rohini (Фото с сайта президента Индии).
- Первый «Горизонт» Израиля.
- 192.
- 193.
- Первый израильский спутник Oz-1 (он же Ofeq-1).
- 194.
- Юваль Неэман.
- 195.
- Хаим Эшед.
- 196.
- Аби Хар-Эвен.
- 197.
- Трехступенчатая твердотопливная РН Shavit: 1 — сбрасываемый головной обтекатель; 2 — ПГ; 3 — сферический РДТТ третьей ступени; 4 — система управления; 5 — РДТТ второй ступени; 6 — агрегаты системы управления вектором тяги; 7 — РДТТ первой ступени; 8 — аэродинамические рули; 9 — сбрасываемые газовые рули.
- 198.
- РДТТ третьей ступени (Фото RAFAEL).
- 199.
- 200.
- Старт РН Shavit со спутником Ofeq (Фото IAI).
- Современные и перспективные представители семейства РН Shavit…
- 201.
- 1 — более мощный РДТТ на первой ступени; 2 — добавление системы управления вектором тяги на третьей ступени; 3 — новая жидкостная четвертая ступень; 4 — более мощный РДТТ на второй ступени; 5 — отсутствие первой ступени.
- 202.
- Запуск спутника Ofeq-6 был неудачным (Фото IAI).
- 203.
- Спутник EROS-В на калибровке оптико-электронной камеры (Фото IAI).
- 204.
- Макет носителя NEXT, предложенного на экспорт (Фото Л.Розенблюма).
- Новобранцы «Космического клуба».
- 205.
- Программа Южной Африки — секретный «клон» израильской?
- 206.
- Ракета-носитель RSA-3 — апофеоз ракетной программы ЮАР… и «клон» израильского «Шавита» (Фото с сайта www.astronautix.com).
- 207.
- Спутник Greensat (Фото ISSA).
- Северокорейский «спутник-призрак».
- 208.
- 209.
- Стартовое сооружение для испытательных пусков ракет. Заметно «китайское влияние» — от особенностей внешнего вида башни обслуживания (см. рис. внизу) до применения на третьей ступени РДТТ, который мог быть «открыто» закуплен в «Поднебесной» (Рис. Ч.Вика).
- 210.
- Рис. Ч.Вика.
- 211.
- Предварительная реконструкция северокорейской РН: 1 — спутник; 2 — твердотопливная третья ступень; 3 — головной обтекатель; 4 — система управления; 5 — жидкостная вторая ступень; 6 — соединительная ферма; 7 — жидкостная первая ступень; 8 — связка ЖРД первой ступени; 9 — аэродинамические стабилизаторы (Рис. Ч.Вика).
- 212.
- Бразильские «фальстарты».
- 213.
- Высотная ракета Sonda 1 (Фото IAE).
- 214.
- Ракета Sonda 4 стала прототипом ступеней спутникового носителя VLS-1 (Фото IAE).
- 215.
- Ракета-носитель VLS-1 на старте Фото IAE (Фото IAE).
- 216.
- 217.
- Второй пуск VLS-1 (Фото INPE).
- 218.
- Монтаж отсека системы управления (Фото INPE).
- 219.
- Спутники SACI-2 и Satec до орбиты не добрались (Коллаж И.Афанасьева. и Фото INPE).
- 220.
- Снимок пускового комплекса на полигоне Алкантара был сделан спутником Ikonos за 2 года до катастрофы (5 сентября 2001 г.), на врезке — через двое суток после нее. Видны сожженная растительность и разрушенный стартовый стол.
- Космические амбиции Южной Кореи.
- 221.
- Пуск ракеты KSR-III с кислородно-керосиновым ЖРД (на фото вверху) (Фото с проекта KARI).
- 222.
- Ракета KSR-III (слева) и первый вариант носителя KSLV–I: 1 — головной обтекатель; 2 — полезный груз; 3 — РДТТ третьей ступени; 4 — система управления; 5 — баллон с гелием системы вытеснения основных компонентов топлива; 6 — бак горючего (керосин); 7 — бак окислителя (жидкий кислород); 8 — боковые ускорители; 9 — ЖРД, установленный в кардановом подвесе; 10 — аэродинамические стабилизаторы.
- 223.
- Многоцелевой спутник KOMPSAT (Фото с проекта KARI).
- 224.
- Космодром на о. Венаро должен иметь два стартовых сооружения (Фото с проекта KARI).
- Иракский «разбег».
- 225.
- Ракета Badr-2000 (Condor-2) (Фото с сайта www.machtres.com).
- 226.
- Исходная ракета ближнего радиуса действия Р-17 (Scud-B)… (Фото с сайта www.dpileggispicks.com).
- 227.
- …и иракские БРСД на ее базе (Фото с сайта www.dpileggispicks.com).
- 228.
- Сверхдальнобойное орудие «Вавилон» Джеральда Була, построенное в Ираке (Фото с сайта www.globalsecurity.org).
- 229.
- Джеральд Булл со снарядом Marlet 1.
- 230.
- Операция «Шок и трепет» завершена. Уничтоженные «Скады» и довольный победитель в тронном зале дворца диктатора. Грозные ракеты остались лишь на картинах (Фото с сайта www.dpileggispicks.com).
- 231.
- 232.
- Видеокадр старта ракеты-носителя «Аль-Абейд» (Фото с сайта www.globalsecurity.org).
- 233.
- «Вавилон» так никогда и не выстрелил… (Фото с сайта www.globalsecurity.org).
- Космические проекты Исламской Республики Иран.
- 234.
- 235.
- Пуск ракеты «Шахаб-3».
- 236.
- Макет иранской ракеты-носителя IRIS и головного блока со спутником (Фото Iran Daily).
- 237.
- Прототип спутника Mesbah (Фото Iran Daily).
- 238.
- Фото А.Бабенко.
- «Самостийный» космос Украины.
- 239.
- Первым ИСЗ серии «Космос», запущенным 16 марта 1962 г., был ДС-2 («Днепропетровский спутник-2»). И спутник, и его ракета-носитель 63С1 («Космос-1» на рис.) создавались в Днепропетровске, Украина (Рисунок А.Шлядинского).
- 240.
- М.К.Янгель, Главный конструктор советской ракетно-космической техники, руководитель НПО «Южное» в период с 1954 по 1974 г.
- 241.
- ДС-2, предназначенный для исследований ионосферы Земли, представлял собой сферический контейнер со стержневыми антеннами, снабженный передатчиком системы «Маяк» с питанием от аккумуляторов. В известном смысле, это и был «первый украинский спутник», но во времена СССР «национальный уклонизм» не приветствовался…
- 242.
- Макеты существующих и перспективных РН украинской разработки (Фото В.Аврамова).
- Казахстан: Байконур зовет.
- 243.
- Комплекс «Байтерек» с РН «Ангара-5» будет построен на Байконуре (Рисунок КБТМ).
- 244.
- Макет авиационно-космического комплекса «Ишим» (Фото А.Веловича).
- 245.
- 246.
- «КазСат-1» (фото вверху) создан в ГКНПЦ им. М.В.Хруничева и запущен с помощью РН «Протон-К» с космодрома Байконур (Фото С.Сергеева).
- Коммерческая затея Лутца Кайзера.
- 247.
- Предполагаемая эволюция ряда ракет OTRAG (Рис. с сайта www.bernd-leitenberger.de).
- 248.
- 249.
- 250.
- Сборка, подготовка и пуск ракеты OTRAG из четырех единичных модулей. Фотографии дают представление о размерах и относительной простоте конструкции (Фото с сайта www.bernd-leitenberger.de).
- 251.
- Экспериментальная высотная ракета OTRAG с четырьмя модулями (Рисунок Peter Alway).
- 252.
- Стартует четырехмодульный OTRAG. Резкий маневр после пуска позволяет предполагать отказ системы управления (Рис. с сайта www.bernd-leitenberger.de).
- 253.
- Стартовая команда OTRAG со своим детищем на полигоне в Заире (Рис. с сайта www.bernd-leitenberger.de).
- 254.
- Кинограмма пуска одномодульного прототипа OTRAG с полигона Тавива в Ливии. Обратите внимание на тип ПУ (Рис. с сайта www.bernd-leitenberger.de).
- 255.
- «Тяжелый OTRAG» при взлете меньше всего напоминает РН в ее современном представлении (Рис. с сайта www.bernd-leitenberger.de).
- 256.
- Апофеоз — фантастический монстр OTRAG-10000 — как он представлялся своим создателям (Рис. с сайта www.bernd-leitenberger.de).
- Заключение.
- 257.
- Принятые сокращения.
- Основные источники.
- Примечания.
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
































































































































































































































































